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A. General Part

1. Introduction and General Survey

The transition df a macroscopic system from a disordered, chaotic state
to an ordered more regular state is a very general phenomenon as is
testified by the abundance o highly ordered macroscopic systems in
nature. These transitions are of special interest, if the change in order
isstructural, i.e. connected witha changein the symmetry o the system'’s
State.

The exigtence of such symmetry changing transitions raises two
general theoretical questions. In the first place one wants to know the
conditions under which the transitions occur. Secondly, the mechanisms
which characterize them are of interest.

Since the entropy o a system decreases, when its order is increased,
it is clear from the second law o thermodynamics that transitions to
states with higher ordering can only take place in open systems inter-
acting with their environment.

Two types o open systems are particularly simple. First, there are
systems which are in therma equilibrium with a large reservoir pre-
scribing certain vauesfor the intensivethermodynamic variables. Struc-
tural changes o order in such systems take place as a consequence of
an instability of all states with a certain given symmetry. They are known
as second order phase transitions. Both the possibility of their occur-
rence and their genera mechanisms have been the subject of detailed
studiesfor a long time.

A second, simple class of open systemsis formed by stationary non-
equilibrium systems. They are in contact with several reservoirs, which
are not in equilibrium among themselves.

These reservoirs impose external forces and fluxes on the system
and thus prevent it from reaching an equilibrium state. They rather
keep it in a nonequilibrium state, which is stationary, if the properties
of the various reservoirs are time independent.

Structural changes of order in such systems again take place, if all
states with a given symmetry become unstable. They were much less
investigatedin the past, and moved into thefocusdf interest only recently,
although they occur quite frequently and give, in fact, the only clue to
the problem o the self-organization o matter. The general conditions
under which such instabilities occur where investigated by Glansdorff
and Prigoginein recent publications [1 — 4]. A statistical foundation of
their theory was recently given by Schlogl [5]. The genera picture,
emerging from the results in [1 — 4] may be summarized for our pur-

poses as follows (cf. Fig. 1):
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Fig. 1. Two branches o stationary nonequilibrium states connected by an instability
(seetext)

Starting with a system in a stable thermal equilibrium state (point 0
in Fig. 1), one may create a branch of stationary nonequilibrium states
by applying an external force A o increasing strength. If 4 is sufficiently
small one may linearize the relevant equations of motion with respect
to the smal deviations from equilibrium (region 1in Fig. 1). In this
region one finds that al stationary nonequilibrium states are stable
if the thermal equilibrium state is stable. If A becomes sufficiently large,
the linearization is no longer vaid (region nl in Fig. 1). In this case, it
is possible that the branch (1) becomes unstable (dotted line in Fig. 1)
for 1> A, where 4 is some critical value, and a new branch (2) of states
is followed by the system. This instability may lead to a change of the
symmetry o the stable states. Assumethat the states on branch (2) have
a lower symmetry (i.e. higher order) than the states on branch (1). Since
for A=4. the lower symmetry o branch (2) degenerates to the higher
symmetry of branch (1), the states o branch (2) merge continuously
with the states of branch ().

A simple example is shown in Fig. 2 There, the system is viewed
as a particle moving with friction in a potential ¢%(w) with inversion
symmetry ¢*(w)= @(— w). The external force 4 is assumed to deform
the potential without changing its symmetry. Three typical shapes for
AZ ], are shown. The stationary states w*, given by the minima of the
potential, are plotted as a function of 4 (broad line). For A=/, the
branch (1) of stationary states having inversion symmetry becomes un-

stable and a new branch (2) of states, lacking inversion symmetry, is
stable.

There are many physicaly differentsystems, which show this general
behaviour. A well known hydrodynamical example is furnished by the
convective instability of a liquid layer heated from below (Benard in-
stability). The spatial tranglation invariance in the liquid layer at rest is
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Fig. 2. Stationary state w® (thick line) of a particle moving with friction in a potential
¢*(w) with inversion symmetry, plotted as a function of an external force |
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broken by the formation o a regular lattice of convection cellsin the
convective state (cf. [4, 6]). Other examples discussed in the literature
are periodic oscillations of concentrations of certain substancesin auto-
catalytic reactions [4, 7} which also occur in biological systems, or
periodic features in the dynamics of even more complex systems [4]
(e.g. Volterracycles).

While the Glansdorff-Prigogine theory predictsthe occurrence o the
instabilities, so far little work has been concerned with the general
mechanisms of the transitions. In the present paper we want to address
ourselves to this question. Asin the case o phase transitions, the gene-
ra mechanisms can best be analyzed by looking at the fluctuations
near the basic instability, which were neglected completely so far. This
is the subject of thefirst haf (part A) of this paper.

Experimentally, the fluctuations near the instabilities in the systems
mentioned above have not yet been determined, although, in some
cases (hydrodynamics) experiments seem to be possible and would be
very interesting, indeed. Fortunately, however, a whole new class of
instabilities has been discovered in optics within the last ten years, for
which the fluctuations are more directly measurable than in the cases
mentioned above. These are the instabilities which give rise to laser
action [8] and induced light emission by the various scattering processes
of nonlinear optics [9]. The fluctuations in optics are connected with
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the emitted light and can, hence, be measured directly by photon count-
ing methods [ 10].

More indirect methods like light scattering would have to be used
in other cases. In part B the considerations of part A are applied to
a number of optical instabilities.

In order to put the optical instabilities into the general scheme
outlined in Fig. 1, we look at a simple example. Let us consider an
optical device, in which a stimulated scattering process takes place be-
tween the mirrors of a Perot Fabry cavity, which emitslight in a single
mode pattern. An example would be a single mode laser or any other
optical oscillator, like a Raman Stokes oscillator or a parametric oscil-
lator. A diagram likeFig. 1isobtained by plotting (besidesother variables)
the real part of the complex mode amplitude # versusthe pump strength
A, which is proportional to the intensity of the pumping source (Fig. 3a).
Neglecting all fluctuations (as we did in Fig. 1), the smple theory of
such devices[11] givesthefollowing general behavior.

For very weak pumping the system may be described by equations,
which are linearized with respect to the deviations from thermal equi-
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Fig. 3a. Real part of mode amplitude g 45 a function of pum strength  (seetext)
b. Relaxation time of mode amplitude as a function of pump strength’i
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librium. The result for the amplitude of the oscillator mode is zero.
Furthermore, one obtains some finite, constant value for the relaxation
time = of the amplitude, which is plotted schematicaly in Fig. 3b. No
instability, whatsoever, is possible in this linear domain, in agreement
with the general result.

With increased pumping, the nonlinearity of the interaction of light
and matter has to be taken into account by linearizing around the
stationary state, rather than around thermal equilibrium. The stationary
solution for the complex amplitude of the oscillator mode is till zero.
The deviations from thermal equilibrium are described by some other
variables, which are not plotted in Fig. 3a(e.g. the occupation numbers
o the atomic energy levels in the laser case). In contrast to the case of
very weak pumping, the relaxation time of the mode amplitude now goes
to infinity for some pumping strength A=A, indicating the onset of
instability of this mode. For A>A a new branch o states is found to
be stable with non-zero mode amplitude and a finite relaxation time z.
The zero-amplitude branch is unstable.

The two different branches of states have different symmetries. All
states on the zero-amplitude branch have a complete phase angle rota-
tion invariance. The phase symmetry is broken on the finite-amplitude
branch, since the complex mode amplitude hasa fixed, though arbitrary,
phase on this branch. The broken symmetry implies the existence of a
long range order in space and (or) time. It should be noted, however,
that this result is modified if fluctuations are taken into account. In
summary, we find complete agreement with the general behaviour, out-
lined in Fig. 1. In particular, the importance of the nonlinear interaction
between light and matter is clearly born out.

It isinstructive to compare this phenomenological picture with the
microscopic picture of the same instability. From the microscopic point
of view the region | is the region where fluctuation processes alone
are important (spontaneous emission). In the region »l stimulated
emission becomes important. In fact, it is the same nonlinearity in the
interaction of light and matter which gives rise to stimulated emission
and the instability. The threshold is reached when it is more likely that
a photon stimulates the emission of another photon, rather than if the
photon is dissipated by other processes.

This picture of the instability is much more general than the optical
example, fromwhich it was derived here. In fact, in as much asall macro-
scopic instabilities have necessarily to be associated with boson modes
because of their collective nature, we may always interpret the onset
of instability as a taking over o the stimulated boson emission over
the annihilation o the same bosons due to other processes. The stimula-
ted emission process, responsible for the instability in this microscopic
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picture, is due to the nonlinearity, which was found by Glansdorff and
Prigogine to be necessary for the onset of instability.

If the threshold of instability is passed, the number of bosons grows
until a saturation effect due to induced absorption determines a fina
stationary state. In this state the coherent induced emission and re-
absorption of bosons constitutes a long range order in space and (or)
time.

The degree to which this order is modified by fluctuations depends
on the spatial dimensions of the system. For systems with short range
interactions there exists no order of infinite rangein less than two spatial
dimensions [12]. Broken symmetries and long range order are found
in such systems only if fluctuationsare neglected. If the latter are in-
cluded, the symmetry is always restored by a diffusion of the parameter,
which characterizes the symmetry in question (the phase angle in the
above example). This slow phase diffusion is a well known phenomenon
for the single mode oscillator discussed before(cf. [8]). The same pheno-
menon is found in al optical examples, which are discussed in part B.

Therefore, symmetry considerations also play an important role for
those instabilities in which symmetry changes are findly restored by
fluctuations. Furthermore, the fluctuations are frequently very weak and
need a long time or distance to restore the full symmetry. Therefore,
we find it useful to consider all these instabilities together from the
common point of view, that they change the symmetry of the stationary
state without fluctuations. They are called "' symmetry changing transi-
tions" in thefollowing.

We now give a brief outline of the material in this article. The paper
isdivided into two parts. Thefirst part A isdevoted to a genera pheno-
menclogical theory of fluctuations in the vicinity of a symmetry chan-
ging instability. In the second part B the general results of part A are
applied to a number of examples from laser physics and nonlinear
optics. Throughout the whole paper we restrict ourselves to systems
which are stationary, Markoffian and continuous. These basic assump-
tionsareintroduced in section 2.1. The fundamental equations of motion

can then be formulated along well known lines either as a Fokker-
Planck equation (cf. 2.1.a) or asa set of Langevin equations (cf. 2.1.b).
In this frame, the phenomenological quantities, which describe the
system's motion area set of drift and diffusion coefficients. They depend
on the system's variables and a set of time independent parameters,
which describe the external forces, acting on the system. All other
guantities can, in principle, be derived from the drift and diffusion
coefficients.However, in many casesit is preferable to use the stationary
probability distribution asa phenomenological quantity, whichisgiven,
rather than derived from the drift and diffusion coefficients. This is a
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very common procedure in equilibrium theory, where the stationary

distribution isalways assumed to be known and taken to be the canonical

distribution. For stationary nonequilibrium problems this procedure is
unusual, although, as will be shown, it can have many advantages. It is
an important part of our phenomenological approach. If the stationary
distribution is known, it can be used to re-express the drift coefficients
in a general way (cf. 2.2), which isa direct generaization o the familiar
linear relations between fluxesand forcesin irreversible thermodynamics
[13], valid near equilibrium states.

The formal connection with equilibrium theory isinvestigated further
by generalizing the Onsager Machlup formulation o linear irreversible
thermodynamics [14 — 16] to include also the nonlinear theory of sta-
tionary statesfar from equilibrium (cf. 2.3).

Since the knowledge of the stationary distribution is the starting
point of our phenomenological theory, section 3 is devoted to a detailed
study of its general properties. Specia attention is paid to the relations
between the theory which neglects fluctuations and the theory which
includes fluctuations.

In 3.1, we show, that without fluctuations, the system may be in a
variety of different stable stationary states, whereas the inclusion of
fluctuations leads to a unique and stable distribution over these states.
This result is used in 3.2 to investigate the consequences of symmetry,
which are particularly important in the vicinity of a symmetry changing
instability, and can, in fact, be usedito determine the genera form o
the stationary distribution. The procedure is completely analogous to
the Landau theory of second order phase transitions [17].

Having determined the stationary distribution, it isstill not possible
to reduce the dynamic theory of stationary nonequilibrium statesto the
equilibrium theory. In equilibrium theory there exists a general, unique
connection between the stationary distribution and the dynamics of the
system, since both are determined by the same Hamiltonian. This
connection is lacking in the nonequilibrium theory. As is shown in
2.2 the probability current in the stationary state has to be known in
addition to the stationary distribution, in order to determine the dyna-
mics. This difference from equilibrium theory is corroborated in 3.3 by
looking at the generalization of the fluctuation dissipation theorem for
stationary nonequilibrium states. Asin equilibrium theory it is possible
to express the linear response of the system in terms of a two-time
correlation function. It is not possible, however, to calculate thiscorrela-
tion function and the stationary distribution from one Hamiltonian.

In Section 4 systems with the property of detailed balance are con-
sidered. In 4.2 and 4.3 it is shown, that, for such systems, there exists
an analogy to thermal equilibrium states, with respect to their dynamic
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behaviour. For such systems, a phenomenological approach can be
used to determine the dynamics from the stationary distribution. In
4.1and 4.2theconditionsfor thevalidity of detailed balanceareexamined.
In particular, it isfound, that a detailed balance condition holds in the
vicinity of symmetry changing instabilities, when only a single mode is
unstable. If several modes become unstable simultaneously, the presence
of detailed balance depends on the existence of symmetries between
these modes.

In part B the general phenomenological theory is applied to various
optical examples. Some common characteristics of these examples and
an outline of the alternative microscopic theory o the optical instabilities
isset forth in Section 5.

Section 6 is devoted to various examples from laser theory. The
laser presents an example of a system, which shows various instabilities
in succession, each of which isconnected with a new change in symmetry.
In the Sections 6.1, 6.2, 6.3 we consider these transitions by means of
the phenomenological theory. In Section 6.4 we consider asan example
for a spatialy extended system light propagation in a one dimensional
laser medium.

The fluctuations near the instability leading to single mode laser
action have been investigated experimentally in great detail [10, 18].
The experimental results were found to be in complete agreement with
the results obtained by a Fokker-Planck equation, which was derived
from a microscopic, quantized theory [8, 19]. In Section 6.1 we obtain
from our phenomenol ogical approach thesame Fokker-Planck equation,
and hence, all the experimentally confirmed results of the microscopic
theory. The number of parameters which have to be determined by
fitting the experimental results is the same, both, in the microscopic
theory and in the phenomenological theory.

In Section 7 the phenomenological theory is applied to the most
important class of instabilities in nonlinear optics, i.e. those which are
connected with second order parametric scattering. The special case of
subharmonic generation (cf. 7.2) presents an example wherethe symmetry,
which is changed at the instability, is discontinuous, asin the example
in Fig. 2. In this case fluctuations lead to small oscillationsaround the
stable state and to discrete jumps between the degenerate stable states.
The continuous phase diffusion occursonly in the non-degenerate param-
etric oscillator, treated in 7.1.

In Section 8 higher order scattering processes and multimode effects
are considered by combining the microscopic and the macroscopic
approach. The microscopic theory isused to derive thedrift and diffusion
terms of the Fokker-Planck equation in 8.2. The macroscopic theory is
used toidentify the conditionsfor the validity of detailed balancein 8.1and
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to calculate the stationary distribution in 8.3, making use of the results
of Section 4. The result, obtained in this way, is very general and makes
it possible to discuss many special cases, some o which are considered
in 84.

Throughout part B we try to make contact with the microscopic
theory of the various instabilities. This comparison gives in some cases
an independent check o the resultsd the phenomenological theory. On
the other hand, thiscomparison isalso useful for a further understanding
of the microscopic theory, since it shows clearly which phenomenona
have a microscopic origin and which not. We expect, therefore, that
a combination o both, the phenomenological and the microscopic
theory, will prove to be most useful in the future.

2. Continuous Markeff Systems

A general framework for the description of open systems is obtained by
making some general assumptions. In this paper, we are only interested
in macroscopic systems, which can be described by a small number of
macroscopic variables, changing dowly and continuously in time. There-
fore, the natural frame for a dynamic description is furnished by a
Fokker-Planck equation, which combinesdrift and diffusionin a natural
way. For reviews o the properties o this equation see, e.g., [20, 21].
Various equivalent formulations o the equations of motion are given
in Sections 2.1 — 2.3. They alow us'o consider a stationary nonequi-
librium systemasa generalization o an equilibrium system from various
points of view. This comparison with equilibrium theory is useful and
necessary in order to construct a phenomenological theory.

2.1. Basic Assumptionsand Equationsof Motion

L et usconsider a system whose macroscopic state iscompletely described
by a set of nvariables

Wh={w,wy,.co, Wiy, W, ) (21)

Examples of such variables are: a set of mode amplitudes in optics, a
set o concentrations in chemistry or a complete set of variables de-
scribing the hydrodynamics of some given system. On a macroscopic
level of description neglecting fluctuations, the variables {w} describe
the state of the system.

A more detailed description takes into account, that the variables
{w) are, in general, fluctuating time dependent quantities. Thus, {w(t)}
forms an n-dimensional random process. The physical origin of the
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fluctuations can be quite different for various systems. Fluctuations may
be imposed on the system from the outside by random boundary con-
ditions or they may reflect a lack of knowledge about the exact state of
the system, either because o quantum uncertainties (quantum noise) or
because o the impossibility o handling a huge number o microscopic
variables.

The random process formed by {w(f)} may be characterized in the
usual way by a set of probability densities

W ({w}, 1)
WZ({W(Z)}’ tz; {W(I’Ltl)

VV\:({W(V)}’ tv; {w(v—l)}, tv—l; '“{w(l)}atl)

(2.2)

This hierarchy o distributions, instead of the set of variables(2.1),
describes a state of the system, if fluctuations are important. W, is the
v-fold probability density for finding {w(t)}: near {w'} at the time
t=t,, near {w'?} for t=t,,...,near {w"} for t=t¢,.

Asafirst fundamental assumption we introduce the Markoff property
o the random process {w(t)}, which is defined by the condition

A N U N T N )| N
TRt RO e I B ety

In (2.3)the conditional probability density P has been introduced, which
only depends on the variables {w'”}, {w"~ Y} and the two timest,, ¢,_,.

From the Markoff assumption (2.3)it follows immediately that the
whole hierarchy of distributions (2.2)is given, if W, and P are known.
The condition (2.3) furthermore implies, that a Markoff process does
not describe any memory o the system o states at timest<t, if at
some time t=¢, the system's state is specified by giving {w(t,)}.

The physical content of the Markoff assumption is wdl known and
may be summarized in the following way: It must be possible to separate
the numerous variables, which give an exact microscopic description of
the system, into two classes, according to their relaxation times. The
first class, which is the set {w), must have much longer relaxation times
than all the remaining variables, which form the second class. The time
scale o description is then chosen to be intermediate to the long and the
short relaxation times. Then, clearly, dl memory effects are accounted
for by the variables {w} and it is adequate to assume that they form a
Markoff process.
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As a consequence d Eq. (2.3) the probability density W, obeys the
eguation

Wy (W}, ) = [{dw} P(wPY{w D)5 15, 1) Wi({(W ) 1) (2.4)

which is obtained by integrating the expression for W,, following from
Eq. (2.3), over {w'V}.

A second fundamental assumption is the stationarity o the random
process {w(#)}. This assumption implies, that all external influences on
the system are time independent on the adopted time scaled description.
It implies, furthermore, that the classification of the system's variables
as dowly and rapidly varying quantities must be preserved during the
evolution o the system. Owing to the assumption o stationarity the
conditional distribution P in Egs. (2.3), (2.4) depends only on the dif-
ference of the two times of itsargument.

a) Fokker-Planck Equation

We simplify Eq. (2.4) by using the stationarity assumption. Furthermore,
wewritetheintegral Eq. (2.4)asadifferential equation by takingt =1, — t;
to be small, expanding P in terms o the averaged powersdf {w'? — w(!)},
and performing partial integrations. Eq. (2.4) then takes the form'

< (_ l)s asKil,iz ..... is ({W}) Wl({w}, t) (25)

Wi({w}, )= s; 5 dw;, dl,,...0w,,

wherethe coefficients K ... are given by

Kip . (O8] = Tim (1/2) w0+ ) = w3, (1) (w0 4+ 9) =i (0)

(2.6)
e (Wi (4 1) = wi (O {w(t)} = {w} .

The angular brackets define the mean values of the enclosed quantities.
The coefficients K ... do not depend on t, due to the stationarity assump-
tion'. The function P({w®}{{wV}; 1), whose expansion in terms o the
moments (2.6) led to Eq. (2.5), is recovered from Eq. (2.5) as its Green's
function solution obeying the initial condition

P({w®} (WD} 0)= [T 6w — wi¥) 27)
@

Equations of the structure (2.5) are well known in many different

fields of physics, where they were derived from microscopic descriptions.

! Summation over repeated indices isalways implied, if not noted otherwise.
2 Note, that Eq. (2.5) with time dependent K ... holds even for non-Markoffian pro-
cesses [20].
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Most recently, perhaps, Eq. (2.5) has been derived in quantum optics
for electromagnetic fieldsinteracting with matter (cf. [8]).

Owing to the appearance o derivatives d arbitrarily high order,
Eg. (2.5)isin most cases too complicated to be solved in this form. In
the following, we smplify Eq. (2.5) by dropping dl derivativesd higher
than the second order. Eq. (2.5) then acquires the basic structure d a
Fokker-Planck equation. Mathematically speaking, the Markoff process
Eq. (2.5) is reduced to a continuous Markoff process in this way.

A physical basis for the truncation o Eq. (2.5) after the second
order derivatives can often be found by looking at the dependence of
the coefficients K ... on the size of the system. To this end the variables
{w} haveto be rescaled in order to be independent o the system's size.
If the fluctuations described by the coefficients K ... have their origin
in microscopic, non-collective events, the coefficients of derivatives o
subsequent ordersin Eq. (2.5)decreasein order of magnitude by a factor
increasing with the size o the system.

As a zero order approximation we obtain from Eq. (2.5)

oW, /ot = — K, ({w}) W,/dw;. (2.8)

This equation can easily be solved, if the solutions o its characteristic
eguations

w;=K;({w}) (2.9)

are known. Eq. (2.8)describesa drift of W, in the {w}-space along the
characteristic lines given by Eq. (2.9).In this drift approximation fluctu-
ations are introduced only by the randomness, which is contained in
the initial distribution. In order to describe a fluctuating motion of the
system, we haveto include the second order derivativetermsin Eq. (2.5);
this leadsto the Fokker-Planck equation

OW,/0t = — 3K, ({w}) Wy/ow; + 38* K, ({w}) W, /ow; 0w, . (2.10)

Thesecond orderderivatives describeageneralized diffusionin {w}-space.
The diffusion approximation (2.10) o Eq. (2.5) is adopted in all the
following.
From Eqg. (2.6) the diffusion matrix K;,({w}) is obtained symmetric
and non-negative. We aso assume in the following that the inverse of
K, exigts. Singular diffusion matrices can be treated as a limiting case.
Eg. (2.10) has to be supplemented by a set d initia boundary con-
ditions. The initial condition is given by the distribution W, for a given
time. The special choice (2.7) gives P as a solution o Eq. (2.10). As
boundary conditions we may specify W, and its first order derivatives
at the boundaries. We will assume "natural boundary conditions" in
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thefollowing, i.e., the vanishing of W, and its derivatives at the bound-
aries.

The conditional distribution P also satisfies, besides Eq. (2.10), the
adjoint equation, which is called the backward equation. It is obtained
by differentiating the relation

Wi({wh, 0= f{dw} P({w}{w'}: 1) Wi({w}t 1) (211)

with respect to t and using Eq. (2.10) to express the time derivative
of W, on theright hand side of thisequation. The differential operations
on W, ({w},t—1) are then transferred to P by partial integrations,
using the natural boundary conditions. Finally, since W, isan arbitrary
distribution, integrands can be compared to yield

[6/0t — K,({w'}) 8/0w; — K ({w'}) 8*/0w;0w; ] P({w}{w'}; 1) =0. (2.12)
Thisequation will be used in Section 4.2,

b) Langevin Equations

Instead of Eq. (2.10) one may use a set of equations of motion for the
time dependent random variables {w(f)} themselves. These are the
Langevin equations, which are stochastically equivalent to the equation
for the probability distributions W, or P, in the sense that the final
results for all averaged quantities are the same. The Langevin equatlons
corresponding to the Fokker-Planck équation (2.10) take the form>[20]:

w; = K;({w}) + F.({w}, ) (2.13)
with

F({w}, )= — 30g:;({w}/dwd) gi ;{w}) + ga{w}) &(D) - (2.14)
The(n x n)-matrix g;,({w}) has to obey the n(n+ 1) relations

i = K (2.15)

and isarbitrary otherwise.
The quantities &,(t) are Gaussian, §-correlated fluctuating quantities
with the averages

&y =0, (2.16)
i) e+ 1)) =6;;0(1). (2.17)

The higher order correlation functions and moments of the {£} are
determined by (2.16), (2.17) according to their Gaussian properties.

® For K;; independent of {w} the Langevin equations are equivalent to the Fokker-
Planck equation. Otherwise the correspondence is approximate only (cf. [20]).
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A characteristic feature o al Langevin equations, which also occurs
in EQ. (2.13), isthe separation of the time variation into a slowly varying
and a rapidly varying part. In the present case this separation is not
unique, since we may impose another n(n— 1)/2 independent conditions
ong;;, besidesthe n(n+ 1)/2 relations(2.15), in order tofix itsn? elements
completely. Usually, these relations are chosen to make g,; symmetric

g=4; (2.18)

which implies, that now the i'th noise source is coupled to w; in the
same way as the j’'th noise source is coupled to w,. This condition is
by no means compelling and can be replaced by other conditions, if
this happens to be convenient*.Whilethiswould change g, and the mean
value of the fluctuating force

<g: ({w}) £ = 389, ({w}/Owy) g, ({w}) (2.19)

it would leave unchanged all results for {w(t)}, after the average has
been performed. This may be smply proven by deriving Eq. (2.10) from
Eqg. (2.13)[20].

Physically, the appearance of a coupling of the {w(r)} to a set of
Gaussian random variables with very short correlation times reflects
the coupling of the macroscopic variables to a large number of statisti-
cally independent, rapidly varying microscopic variables. Therefore, Eq.
(2.13) gives a very transparent mathematical expression to our basic
physical assumptions.

2.2. Nonequilibrium Theory as a Generalization of Equilibrium Theory®

The equations of motion obtained in the last section can be compared
with familiar equations of equilibrium theory. The Fokker-Planck equa-
tion (2.10) may be written as a continuity equation for the probability
density W, in the general form

BW,({w}, /8t +d(ri({w}, 1) W, ({w}, 1))/dw, =0 . (2.20)

In Eq. (2.20) we introduced the drift velocity {r({w},t))in {w}-space.
In order to establish a connection with equilibrium theory we define a

"potential™ ¢({w}.t) by putting
Wi({w}, )= N exp(— ¢({w},1)). (2.21)

* For n>2 a possible condition is dg;;/dw, =0 for all j, in which case some of the
following expressions are simplified considerably.

5 By equilibrium theory we mean the theory of thermal equilibrium and the linearized
theoriesin the vicinity of thermal equilibrium.
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Here, N isa normalization constant, which is independent of {w) and t.
Comparing now Eq. (2.20) with Eq. (2.10) and using Eq. (2.21) we may
express the drift coefficient K;({w}) in terms of the newly defined quan-
tities¢ and {r). We obtain

K;— 30K, /ow, = — 5K, 0¢/0w, +1;. (2.22)

The left hand side of Eq. (2.22) represents the total drift, as can be seen
by writing Eq. (2.10)in the form

0 1 1 0

oW, /0t + 6-w(K‘ - TaK,-,‘/awk— ?K”‘ a—wk) W, =0. (2.23)
Eq. (2.22) shows, that the total drift can generally be decomposed into
two parts. The first part is connected with the first order derivatives
of the potential ¢(t). The second part is the drift velocity of the proba-
bility current which satisfies the continuity Eq. (2.20). The decomposi-
tion (2.22) holdsfor al potentials¢(t) and velocities{r(t)} which together
satisfy Eq. (2.20) at a given time. Of specia interest is the pair ¢*({w})
and {r({w})} which solves Eqg. (2.20) in the stationary state with
0W;/dt=0. By introducing the decomposition (2.22) into the Langevin
eguations we obtain

Wy =1} — 3K 0¢°/0w, + 391 (09,1/0w; + Ei(D)) - (2.24)

The decomposition (2.22) is well ,known from the theory of systems
near thermal equilibrium, where it bcquires a special meaning. There,
the decomposition (2.22) simultaneously is a decomposition o the total
drift into two parts which differ in their time reversal properties. The
first part of the drift in Eq. (2.22) describes the irreversible processes.
Theexpressions — 3K, d¢°/dw, represent the familiar set of phenomeno-
logical relations giving the irreversible drift terms as linear functions of
the thermodynamic forces, defined by the derivatives of athermodynamic
potential [13]. The coefficients K,, are then the Onsager coefficientsin
these relations. The fact that they also give the second order correlation
coefficients of the fluctuating forces is a familiar relation for thermal
equilibrium. The remaining part of the drift is associated with reversible
processes, described by some Hamiltonian. The continuity Eq. (2.20),
satisfied by this part. is then simply an expression for the conservation
of energy in the form of a Liouville equation.

Unfortunately, such a simple physical interpretation o the two dif-
ferent parts of the drift is not possible, in general, for nonequilibrium
states. There, both parts contain contributions from reversible and
irreversible processes. Eq. (2.22) is then no help for calculating the
potential ¢, and the stationary distribution Wi from the drift and
diffusion coefficients.

i
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In al cases, however, in which the potential ¢°, the velocity {r®)
and the diffusion coefficients K;, are known by other arguments (e.g.
by symmetry). Eq. (2.22) is useful to determine the drift K;({w}). This
givesthe key for a phenomenological analysis of the dynamics of station-
ary nonequilibrium systems in cases in which symmetry arguments play
an important role (cf. section 3).

2.3. Generalization of the Onsager-Machlup Theory

In this section we put the equations obtained in 2.1 on a common basis
with the phenomenological theory of thermodynamic fluctuations. While
thisis useful from a systematic point of view, it is not necessary for an
understanding of the other sections.

A set of Langevin equations of the form (2.13) has been used by
Onsager and Machlup [14] as a starting point for a general theory of
time dependent fluctuations of thermodynamic variables. However, an
essentia restriction of their theory was the assumption o the linearity
of Egs. (2.13). The same assumption has also been used by a number of
subsequent authors [15, 16], although the necessity for a generalization
of the Onsager Machlup theory to include nonlinear processes was
emphasized [16].

In this section we shall give such a generalization, starting from
Egs. (2.13) and alowing for nonlinear functions K({w}) and g, ;({w}).
This generalization will serve the two purposes: first, showing in which
limit the usual thermodynamic fluctuation theory is contained in the
present formulation and second, showing' the limits of the Onsager
Machlup formulation of fluctuation theory for general Langevin Egs.
(2.13). An essential point of the Onsager Machlup theory is to consider
probability densitiesfor an entire path {w(r)} in some given time interval,
rather than for {w(¢,)} at a given time t,. The probability density for an
entire path is obtained from the hierarchy (2.2) in the limit in which
the differencesbetween different times go to zero. In this limit we obtain
a probability density functional W, [{w}] o the paths {w(r)} which may
be viewed as a function of the infinite number o variables {w(r)} taken
at all timesin some given timeinterval r, <t <t,. The Onsager Machlup
theory can now be characterized by the postulates [16] that

i) {w(1)} is a stationary Markoff process, and

ii) the probability density functional W, _[{w}] is determined by a
function O({w(1)}, {w(1)}) in the following way:

W, [{w}l=G(F; ) (2.25)
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where F, ; isdefined by the integral
(w2 (t2)),12

Fyy= | dro({w®, {w(n)}). (2.26)

w2 (1)}, 11

G in Eg. (2.25) is a nonnegative but otherwise arbitrary function. It
can be determined by the following argument. From the first postulate
we infer, that the conditional probability density P obeys the relation

P{w™ Wit — 1) (2.27)
= f{dw" D} PO W™ DYt — 1, ) PO DM W D)t — 1)
On the other hand P isgiven in terms of W, by the functional integral

W (), 1y

POt~ )= (L] 6 T owio), il dr) 228
(w11}, 1y

where the integration runs over all paths passing through the indicated

boundary values. The integrand in Eq. (2.28) could also be expressed as

G(F,;). Taking Egs. (2.27) and (2.28) together, we obtain the relation

fH{dw}(G(F, ) = G(F, , 1) G(F,, 1))=0. (2.29)

Since this equation must be fulfilled for al choices of the intermediate
boundary of integration {w"~"(¢,_,)}, Eq. (2.29) is a relation for the
non-negative function G, which has the simple structure

s

g(F, + Fy)=g(F,}g(F,). (2.30)

The unique, nonsingular and nontrivial solution of Eq. (2.30) has the
form

g(F) ~ exp(aF). (2.31)

By measuring the function O in appropriate units, we may takea= — 1
and obtain

Wol{iw}] ~ exp[— fdt O({w(0)}, {(W(0)})] (2.32)

which determines W, up to a normalization constant, which will not
depend on {w),{w}.

An expression of the form (2.32)is useful as a starting point of fluc-
tuation theory, as was first noted by Onsager and Machlup. Eg. (2.32)
establishes for time dependent fluctuations a relation between a proba-
bility density and an additive quantity, the Onsager Machlup function
0. O has thermodynamic significance. since it can be related to the
entropy production. Therefore, Eq. (2.32) is the time dependent anal ogue
to the familiar relation between probability density and entropy which
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holds in the static case. In addition, Eq. (2.32) is valuable, because it
contains in a concise form the most complete information on the paths
{w(r)}. Hence, the Onsager Machlup function O plays a role in fluctua-
tion theory, which is similar to the role of the Lagrangian in mechanics.

Wedetermine now the Onsager Machlup function which isequivalent
to the equations of motion (2.13). The Onsager Machlup function
of {&(t)}, introduced in (2.14), may be written down immediately, by
using Egs. (2.16), (2.17).We obtain

N ty
WL = lim ] (/42 diw)ep| 4 [decoen|  233)

to

wheret, <t <t, issome given time interval and
t,=to+Vvt;/N; N=(t;—1,)/At (2.34)

is a discrete time scale which becomes continuous in the limit 4¢r—-0,
N — 0. From (2.33) we obtain

O({En}) =240 (0. (2.35)

From Eq. (2.33)we may derive an expressionfor W [{w}], sinceEq. (2.13)
defines a mapping of both functionals on each other. The probability

WL {3 TH{dE ] = W [{w}] [{dw}] (2.36)

hasa physical meaning and is an invariant of this mapping. The volume
elementsin function space are connected by the Jacobian of the mapping
(2.13)

[{d&}] = D({w}) [{dw}] . (2.37)

Since the mapping (2.13) is nonlinear in our case, the Jacobian is not
merely a constant, as in the Onsager Machlup theory, which could be
absorbed into the normalization constant, but it rather is dependent on
{w}and has to be calculated. This can be done in a conventional way
by introducing a discrete time scale, Eq. (2.34), and passing to the con-
tinuouslimit at the end of the cal culations. The discretization of Eq. (2.13)
has to be done with some care, introducing only errors of the order
(At)'. in order to obtain the correct continuous limit 4t—0. We skip
the lengthy but elementary calculation and give immediately the result
for the Jacobian

D({w})) = { lim [T4t)/Det(K)1° 1}

)

exp [ L] dU(eK 0w, — 17K ufow, ow, (238)

+(agjk/awj) : gk—nl("{)n - K, +%6Knl/awl) +%gjk 6291k/awj 6w,) .
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K!? isdefined by
KR =Ky ({w(t,)}). (2.39)

We can now write down the complete functional W, [{w}], by introduc-
ing the mapping (2.13) into Eg. (2.33) and taking into account Egs.
(2.36) - (2.38).

W [{wW}] [{dw}] :{ Altiglog{dw(tv)} [2nAt.Det(Kg;>)]~1/z}

5 (2.40)
-exp (— fdto({w(n)}, {W(t)}))

The Onsager Machlup function is obtained as
O({w(n)}, (w(n})=3(w; — K; + 30K, /Ow,) K;'(w;— K;+ 30K ;/ow)

+10(K, — 30K, Jow ,-)/aw,-+é(aZK,~,-/aw.-aw,-—(ag.-/awk)(agk/aw,-))-
(2.41)

Egs. (2.40), (2.41) generalize the result for linear processes in two ways.
First, Eq. (2.41) contains a correction term which comes from the non-
linearity of the total drift K,({w}) — 50K, ({w})/0w,. Secondly, the de-
pendence of the diffusion coefficients K;,({w}) on the variables alters
the form of the functional (2.40).Eqg. (2.40)shows, in fact, that the second
postulate of the Onsager-Machlup theory is no longer valid if the diffu-
sion coefficients are functions of the variables {w}, since the Onsager
Machlup function alone does no longer determine the probability density
functional.

The expressions (2.40).(2.41) can be used asa starting point to derive
in a systematic way the equations of the preceding sections. We indicate
very briefly how this can be done. The conditional probability density
P({W W {w®}, 1, —t,) is given in terms of O by the functional integral

PO WO 1) = | WaL(w}] [(dw]] (2422)

(WO (g}

with Eqg. (2.40). This functional integral has a pronounced analogy to
the path integralsintroduced by Feynman into quantum mechanics [22].
In fact, it was shown by Feynman that the Green's function G o the
Schrodinger equation for a particle of mass m moving from a point in
space {x©} at time ¢, to a point {x’} at time t,, can be obtained as

Statistical Theory o Instabilities in Stationary Nonequilibrium Systems 2

the functional integral

fxt ()}

G{xM}{x O}, t, —ty) = [ lim [Tdx™ -2z dtm™ ki)~ '/?
(x

oy 4170

) (2.42b)
cexp|ih~ ' [ dr- L({x}, {x})

where L is the Lagrangian o the particle. From this formal analogy a
number Of interesting results immediately follow. O is, in fact. the ana-
logue of a Lagrangian for the motion in {w}-space. Once O is known,
the Fokker-Planck equation can be derived in analogy to the derivation
of the Schrodinger equation in the Feynman theory. Thisanalogy of the
Fokker-Planck equation and the Schrodinger equation proved to be
very useful in laser theory [19] and many different fields of statistical
mechanics (cf. the papers by Montroll, Kawasaki, Zwanzig in [23]). The
analogue of theclassical limit of a very heavy particle(m+ «o) in quantum
mechanics is, in our case, the limit of vanishing fluctuations K;, —0.
In thislimit the" Lagrangian™ equations

d a0 a0
dt dw, aw,

-0 (2.43)

give an adequate description. For nonvanishing fluctuations, but con-
stant diffusion coefficients K;,, these equations still remain valid if they
are averaged over the fluctuations, in analogy to Ehrenfest's theorem of
guantum mechanics.

3. The Stationary Distribution

In this section we will consider some general properties of the stationary
state in descriptions which either neglect or include fluctuations. Of
particular interest are the symmetry changing transitions between dif-
ferent branches of states, which are caused by instabilities of the system.
In the first subsection we give a discussion of various stability concepts
and obtain severa results on the stability of the stationary state. In
the second subsection we consider some consequences of symmetry
for the stationary distribution. The results of these subsections are quite
analogous to results of equilibrium theory. It will become clear that a
close analogy exists between second order phase transitions and sym-
metry changing transitions between different branches of stationary non-
equilibrium states, and that a phenomenological approach can be used
to obtain the stationary distribution in the vicinity of the instability.
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The limits of the analogy are shown in the third subsection, where we
discussthedissipation fluctuation theorem for stationary nonequilibrium
states.

3.1. Stability and Uniqueness

In Section 2 we introduced two different descriptions for the "state of
the system". The first was given by a set o numbers {w),Eq. (2.1), the
second was given by a set of probability densities, Eq. (2.2).With both
descriptions we may associate a definition of the stationary state and
of the stability of the stationary state.

a) Stability of a Single State

Let us first deal with the description furnished by the set of numbers
(2.1). This description is adequate if fluctuations can be neglected. A
stationary stateis obtained if

{wi(e)} = {w(tt T)} (3.1)

is either constant or periodic in time with some constant period T =0.
The probability distribution, corresponding to (3.1)is

Wi= ];)[ 6(w; — wi(t)) 3.2)

which changes periodicaly in time. 'Fhe stationary distribution, which
one obtains as a limit for very small K,,, is not Eq. (3.2) but rather the
time average
t+T
Wi=T"" [ de[]d(w;— wir) 3.3)
t (0]

which defines a time independent surface in {w}-space, rather than a
moving point, like (3.2)°. The dynamics is described, in the present case,
by the drift approximation Eq. (2.8) of the Fokker-Planck equation, or
by the Langevin equations in the same limit, which, according to Eq.
(2.24), may be put into the form

W= —3K,; 0050w, + 7. (3.4)
The potential ¢* isgiven by the stationary distribution
Wi~ exp(—¢°). (3.5)

S If several stable states (3.1) coexist, the limiting distribution (3.3)is distributed over
several surfaces.
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The stationary drift velocity {P) satisfies the equation (cf. Egs. (2.20)
(2.22))

or Wi/ow,=0. (3.6)
Since {r?) is the stationary drift velocity, {w*} has to fulfill the equation
W= ri(w)). 37
By comparison with Eq. (3.4)we find

o0 ({whfow;=0 (3.8)

which is satisfied for al states of maximum or minimum probability.
In order to analyze the stability of these states we distinguish two
cases. In the first case

ri{w}) 0¢*({w})/ow; =0. (3.9)

In the second case Eq. (3.9)does not hold. In the latter case {r*} has
acomponent orthogonal to surfaces o equal potential ¢°, and no general
prediction about the stability of the stationary state can be made.

If (3.9)is satisfied, ¢* can be used as a Lyapunoff function [24] for
Eqg. (3.4), since the total time derivative o ¢° isgiven by

d¢*/dt=(0¢%/ow) wi= — K, (0¢°/0w,) (0¢*/0w) <0 (3.10)

and is aways negative, except when condition (3.8)is fulfilled, when it
is zero. Here we made use of the positive definiteness of the diffusion
matrix. In a neighbourhood of stationary trajectories connecting points
of maximum probability density (minimum ¢°) we have

¢~ Prin=0 (3.11)
d(¢® — ¢5,in)/dt £0. (3.12)

If {w*} isalocal, non-degenerate minimum of ¢* the > signin (3.11)
holds for { w)# {w*}. In this case ¢* — ¢, has al the required proper-
ties of a Lyapumoff function and the state {w*} isfound to be stable.
For {ws)independent of time, it followsfrom Eq. (3.7)that {r*({w*})} =0.

In the case where the minimum of ¢* are continuously degenerate,
there are statesin the neighbourhood of each {w*} for which the equality
sign in Eq. (3.11) holds. This is always realized, if {r*({w*})} is different
from zero. Then the trajectory is still stable with respect to fluctuations
towards states with lower W7 and higher ¢71. It is metastable with respect
to fluctuations towards states with equal ¢°, which are either on different
trajectories or on the same trajectory. Metastability of the latter kind
leads to a diffusion of the phase of the periodic trajectories (3.1). The
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presence of fluctuations, even if they are very small, thus completely
changesthestability resultsfor thestationary state. Thiswill beconsidered
further in the next subsection. Here we see that stable stationary states
are associated with minima of ¢* and that several stable states may co-
exist simultaneously. The symmetry of the stationary states is given by
the symmetry of the minima of ¢°.

b) Sability and Uniquenessd an Ensaembled States

If a statistical description of the system is used, a stationary state has
to be defined by the condition, that the probability densities (2.2)depend
on timein a periodic way. In particular

Wi({w}, t+ T)= Wi({w}, 1) (3.13)

has to be constant or periodic in time with T=0. We will find that
T =0 is the only possibility. The stability of the stationary state is now
determined by the stability of the solutions (3.13)df Eg. (2.10).As was
indicated in subsection a, even the dlightest fluctuations change the
stability considerations completely. The system of Egs. (3.4)could have
a manifold of stable solutions. If fluctuations are present, which allow
the system to assume all values {w},we find that generally only one
stable probability density (3.13) describes the stationary state of the
system. Hence, al the instabilities, which were possible in Eq. (3.4), are
now buried, even in the slightest fluctyations. The instabilities manifest
themselves only in the detailed form of the probability density WF, as
will be discussed in 3.2.

The proof of the stability and uniqueness of the stationary distribu-
tion of Eq. (2.10)hasalready been given by Lebowitz and Bergmann {25]
under rather general conditions. We give here a short account of their
proof. It consists in showing that the function

K(t)= f{dw} W, ({w}, ) In[W,({w}, 1)/ Wi({w}, )] (3.14)
with the property

>0 for W, £W;
K., W (3.15)

canonly decrease in the course of time. The same function wasemployed
in [5] for a genera analysis of stationary nonequilibrium states. The
property (3.15) can be shown by replacing In(W,/Wj;) in Eq. (3.14) by
In(W,/W3) — 1+ wi/W,, (whichis possible because of the normalization
condition for the probability densities) and using the inequality

+ >0 for x>0, x=1,

1 -1
nx =0 for x=1.

(3.16)
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The time variation of K(¢) isgiven by

K(t+1)—K() (3.17)

Wl({W},t+T) Wl({w}’t)

Wi{wht+1) Wi({w}, 1)

which, by using Eq. (2.4), we may write as the double integral

K(tt7) - K(t)=[{dw} {dw®} P w2} (w D}t F o )W, (W}, 1)
[lnQ+1-0]1<0 (3.18)

:j{dw} W ({w},t+1)In —Wi({w},t)In

with
_ Wi({(wLt+ gy W(w), 1)
Q= Wi({wMY, t 4 1) W ({w?}, 1)

(3.19)

If we assume that all pointsin {w}-space are connected with each other
by some sequence of transitions, the equality sign in Eq. (3.18) holds
if and only if Q=1, i.e.

W, (W}, t+1) _ W ((w®}, 1)
Wi(wytt ) T ws(w®,t)

The constant in Eq. (3.20)is 1 by normalization. This proves that K(z)
has the properties of a Lyapunoff functional for Eg. (2.10).It shows
that al probability densities W; approach each other in the course of
time. If the limit exists, it is given by the stationary distribution W3,
which is unique and stable.

As a conseguence, the periodic time behaviour, postulated for the
stationary distribution W; in (3.13), has to be specialized to time inde-
pendence. Otherwise it would be possible to construct many different
stationary solutionssimply by shifting the timet by an arbitrary interval.
Moregeneraly, it followsfrom the uniquenessdf the stationary distribu-
tion, that W} and ¢* haveto beinvariants of all symmetries of the system.
Otherwise, many different stationary distributions could be generated
by applying one of the symmetry transformations of the system. These
transformations leave Eq. (2.10) unaltered, but would change the sta-
tionary distribution if it were not an invariant.

= const (3.20)

3.2. Consequences of Symmetry

Thefact that the stationary distribution W} isan invariant of all symmetry
operations of the system has some interesting consequences, which are
discussed now. For the case of wesak fluctuations the distribution Ww;
will have rather sharp maxima. The behaviour of the system will then
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depend on the location of these maxima and on the behaviour of W}
in their vicinity. Both properties of W; are determined by the sym-
metries of the system in the following way. Extrema of W} appear on
all points in {w}-space which are left invariant by some symmetry
operation of the system (cf. Figs. 4, 5 point 0). Since W; as a whole is
an invariant, the vicinity of each extremum has to remain unchanged
by the same symmetry operation which gave rise to the extremum. There-
fore,a point in {w}-space which isinvariant against all symmetry opera-
tions, has to bealocal extremum of W} with completely symmetric neigh-
bourhood (Figs. 4, 5 point 0). Extrema with lower symmetry have a
neighbourhood with lower symmetry. Such extrema must occur in de-

® (1w))

W

W
0 '

Fig. 4. The potential ¢° in the vicinity of a stable symmetric state 0 in a system with two-
dimensional rotation symmetry

q>5(1w1)

We

Fig. 5. The potential ¢ in the vicinity of a metastable state P with lower symmetry, for a
system with two-dimensional rotation symmetry
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generate groups. The degeneracy is either continuous on a whole sur-
facein {w}-space (cf. Fig. 5 point P),or discontinuous(cf.Fig. 2, point P),
depending on whether the symmetry broken by the extremum is continu-
ous or discontinuous.

We consider now the reaction o the system, when we change the
external forces acting on it. The external forces are described by a set
of time independent parameters{A). It is always assumed that a change
of {I) does not change the symmetries. Therefore, only the detailed
forms of W{ and ¢* can depend on { I) but not their global symmetry
(cf.Figs. 4, 5). In particular the location o the nondegenerate symmetric
extrema of W; cannot change. However, these fixed extrema can be
transformed from minima into maxima and vice versa. These trans-
formations are the cause for symmetry changing transitions. Consider,
e.g., a highly symmetric maximum of W} (point 0 in Fig. 4). As long
as it retains its maximum property, a variation of {A) has only a small
(quantitative) effect on the stationary state (3.1). Assume now that for
some critical vaue {A) ={A,), the maximum of W} is transformed into
a minimum. Since W} must be zero at the boundaries, a new maximum
of Wi must be formed somewhere (point P in Fig. 5). Since the symmetric
point is already occupied with the minimum of W}, the new maximum
must form on a less symmetric point. Therefore, it breaks the symmetry
and isdegenerate with awholegroup of other maxima. The new stationary
state (3.1) of the system is now given by one of these less symmetric
maxima, i.e.,asymmetry changing transition hasoccurred. Thisbehaviour
is wdl known for systems in thermal equilibrium undergoing a second
order phase transition and concepts of second order phase transitions
may, in fact, be applied to this problem. It should be noted, however,
that most of the difficulties of phase transition theory can be avoided
here, because they are due to the necessity of taking the thermodynamic
limit of an infinite system. Thislimit has not to be taken for the examples
we consider here. Therefore, the mean field theory of phase transitions,
which disregards the singularities due to the thermodynamic limit, is
particularly well suited for our cases. Its derivation in terms of pure
symmetry arguments was given by Landau [17]. We apply his reasoning
to determine W7 in the vicinity of {A) ={1.}.

Let G be the symmetry group describing the symmetriesof the branch
of states with higher symmetry. Then the state {w*(4.}) is an invariant
of G. In the vicinity of the transition the states on the less symmetric
branch differ little from {w3({A.)))and we may put

w{AD} = (w({AD} + {aw {4} (3.21)

with small {Aw*}. The potential ¢*({w}) can now be determined from
the condition, that (3.21)givesits minima (cf. Eq. (3.8)).Since {Aw*({4})}
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is small we may expand ¢° in a power series of {Aw) = {w} — {w*({A}}.
Since ¢° is an invariant of G it can only depend on invariants which
can be formed by powers and products of the variables {Aw). There
is no first order invariant of G besides {w*({4.})}. Hence, the power
series starts with the second order invariants F,‘?({4w}), one invariant
being connected with each irreducible representation v of G. The invari-
ants F*({Aw}) can al be chosen to be positive. This gives

¢ =Y a FP{Aw}) +---. (3.22)

For a,>0 the minimum o ¢° is given by {Aw®)=0, and describes
the symmetric branch. All F{*' are zero on this branch. A symmetry
changing instability occurs, if at least one of the coefficientsa, changes
sign for {4} = {4.}. The corresponding invariant F{* will then have a
non-zero value in the stationary state, and higher order terms in the
expansion are required. The third order invariants have to vanish if
{Aw({A.})} is to be a stable state and the 4th order terms have to be
positive definite. The potential ¢° isthen given by

¢*=aFP({aw))tT ¥ b, FG({Aw}) (3.23)

In thisexpansion all second order invariants have been dropped, besides
the one invariant F®, whose coefficient a changes sign at the transition
point. The other invariants describe fluctuations which are weak com-
pared to the strong fluctuations arising irom the transition. The latter
are only limited by the 4th order termsin the expansion. For the same
reason, only the fourth order invariants of the corresponding irreducible
representation have to be taken into account. This limits the number of
phenomenological coefficients a, b which have to be introduced. The
expansion (3.23)may be,simplified further by introducing the new vari-
ables

nt=F3({Aw}), (3.24)
{AW}=n"1{Aw}. (3.25)

Since the second order term in Eg. (3.23)depends on » only, the fluctua-
tionsin {4W} are small, so that these variables can be replaced by the
quantities which minimize ¢* under the constraint

FO({4w})=1. (3.26)
The remaining expression
¢*=an®+ by (3.27)
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with

a~(@A.,—4); b>0 (3.28)
gives ¢* and the stationary distribution W; as a function of the second
order invariant (3.24)alone. Thus, in the vicinity of a symmetry changing
instability the number of variables, on which the potential ¢* and the

stationary distribution W; ~ exp(— ¢°) depend, is effectively reduced to
1. This will simplify the analysis of the dynamics considerably.

3.3. Dissipation-FluctuationTheorem for Stationary Nonequilibrium States

The linear response of a system’, described by Eq. (2.10), to an external
perturbation can easily be calculated by adding a perturbation term on
the right hand side of Eg. (2.10).We obtain

oW jet=LW, + L, W,. (3.29)

Here, L is the linear operator acting on W, on the right hand side of
Eq. (2.10).1t fulfillsthe relation

LWs=0. (3.30)

The operator L., describes an additional external perturbation. In
general, it will take the form of a Poisson bracket with a perturbation
Hamiltonian H,,,.

_[0Hy 0W;  OW; OH™

LextW1S= [Hexu W1s] = al:?“ 5 _ o 0 (331)

In defining the Poisson bracket in Eq. (3.31)we have assumed that we
can split the variables {w) into pairs of generalized coordinates {u) and
momenta {v). This is not a rea restriction, since for each coordinate
we may formally introduce a conjugate momentum, on which ¢°* depends
asasecond order function.At theend of thecal culations we may eliminate
these variables by integrating over them. H,,, is then the Hamiltonian
of the external perturbation which has the general form

H. ()= — A;({u}, {v}) F;(1). (3.32)

Here, {F(t)} is a set of external forces coupled to the system by some
functions {A({u}, {v))} By standard first order perturbation theory, we
find the first order response AX of some function X ({u(t)}, {v(t)}) to

7 For other calculations see [26] and {27]. The latter treatment is similar to the one
given here.
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the external force Fi(t)

t

AX({u®} {v@}))>= [ dr gy (t—1) F(1). (3.33)

The well known result for the response function ¢y ;(t)
¢x.(0) = LA({u®}, (v}, X ({ult + 0}, {p@e+ DD (3.34)

is the average of a two-time Poisson bracket. Expressing Wy by ¢* we
obtain

by ()= — (X ({ule + 0}, {o(t + 0)}) [$({u(®)}. {v(0}), A({u®)}, {LOND

(3.35)
which isthe two-time correlation function of the function X and a Poisson
bracket. Thisresult issimilar to the result for thermal equilibrium systems.
There, ¢* is replaced by the Hamiltonian H and the Poisson bracket
reduces toa first order derivative in time. Apart from specia cases, no
genera relation between ¢* and the evolution in time existsin stationary
nonequilibrium systems. Hence, this last step cannot be performed in
this general case. In the special case of systems which have the property
of detailed balance in the stationary state, a further simplification is
possible. These systems are considered in the next section.

4. Systems with Detailed Balance

}
\

In the discussion of the stationary distribution in the preceeding section
we could make use of many considerations familiar from systems in
thermal equilibrium. In general, this analogy does not hold for the
dynamic behaviour. Asindicated in 3.3, the stationary distribution con-
tainsonly alittle information about the dynamic behaviour of the system.
Thereason is, as we will seein this section, the lack of detailed balancein
stationary nonequilibrium states. It is the presence of detailed balancein
thermal equilibrium, which provides there the important link between
staticsand dynamics. Therefore, the special classdf stationary nonequilib-
rium systems exhibiting detailed balance with respect to their relevant
variables {w) should show a close analogy to thermal systems, even
with respect to their dynamic behaviour. The detailed balance of station-
ary nonequilibrium systems will not be complete and will not comprise
all degrees of freedom, because of the action of external forcesand fluxes.
Fortunately, it is sufficient for our purposesto consider systems showing
detailed balance with respect to the small number of variables {w)which
are used to describe the system. Detailed balance is discussed from a
general point of view in [287. Some implicationsfor Markoffian processes
were considered in [21]. Our analysis follows the recent papers [29, 30].
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4.1. Microscopic Reversbility and Detailed Balance

In thefollowing the transformation of the variables { w) with time reversal
isimportant. We define a new set

{W}={e,wy,e,W5,..., 6,W,} 4.1)

where ¢;= — 1(+ 1)8, if w; does (does not) change sign if time is rever-
sed. (The variables can aways be chosen that either of these are true.)
Similarly we consider the time reversal transformation of a set of exter-
nally determined parameters {A),on which the probability densities may
depend, and define

(B ={v,A0,v3A5,..., v, 4} 4.2)

wherev,= — 1(+ 1), if 4; does (does not) change sign if time is reversed.
The property of microscopic reversibility may now be defined by the
relation

W,({w®y, t+o; (wh}, 13 (A}) = Wo({# @}, t — 7 (W), 15 {1 }) @.3)

where the dependence o the probability densities on the external param-
eters {A) has been made explicit. By specializing microscopic reversibility
(4.3)for the stationary state we obtain the property of detailed balance

Wi((w} t+ o (W)t {A)= Wi((w D tH o (0@t {1)). (4.4)

Equation (4.4)expressesthe following property of the stationary state:
The number of transitions from {w'"} at t=t¢, to {w!?} at t=t, isequal
to the number of transitions from {#w'®} at t=t¢, to {wM} at t=t,.
Therefore, apart from reversible motions, each pair of states {w'V},
{w?} is separately balanced in the stationary state. By using Eq. (2.3)
we may rewrite Eq. (4.4)in the form

PEwEH{w D75 {4 Wi({w}; {4))

= PO} o { | wea@ ) (1)
Integrating Eq. (4.5) over {w'®} we obtain a symmetry condition for
Wi({w})
Wi(w}, (1) = Wi({#}. {2)). (4.6)

For systemsin thermal equilibrium Eq. (4.5)can be derived from the time
reversal invariance of the microscopic equations o motion. This deriva-
tion isno longer possible for systemsin stationary nonequilibrium states,
sinceexternal forcesand fluxeswill destroy detailed balance. The station-

@.5)

S In all formulas containing ¢ and v, no summation over repeated indices isimplied.
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Fig. 6a— d.Stationary states with and without detailed balance for a 3-level atom. a Energy
levelswith transitions ratesr; ;and pump rate | .b Equilibrium (1= 0) with detailed balance.
¢ Stationary nonequilibrium state (1+0) without detailed balance. d Stationary non-
equilibrium state (1 $0) with detailed balancefor r,y=r;; =0.

ary distribution will then be maintained by cyclic sequences of transi-
tions between more than two states [28]. The example of an externally
pumped three-level atom, shown in Fig. 6, has been discussed in thelitera-
ture [28, 31]. This example makes it obvious, that, detailed balance in a
stationary nonequilibrium system will be present, if each pair of statesis
connected by only one sequence of allewed transitions. In Fig. 7, we give

Fig. 7. Detailed balance in a one-dimensional array of states with transitions between
neighbouring states.

asan example, a system for which only transitions between neighbouring
statesin a one-dimensional array are allowed. In the limit in which the
configuration space becomes continuous, the transitions in this example
would have to be described by a Fokker-Planck equation in a one-
dimensional configuration space. If the transitions have to vanish at
the boundaries of the configuration space, it is obvious from Fig. 7 that
detailed balance has to be present in the stationary state. In al cases, in
which the configuration space of the system has more than one dimension
(cf. Fig. 8), each pair of statesisconnected by many different sequences of
allowed transitions, even if only transitions between neighbouring states
in configuration space are alowed. In these cases, detailed balance is
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guaranteed, if symmetry demands that the transition rate from one state
to some other state is equal for al possible sequences of intermediate
states. E.g., if the external forces acting on the system represented by
Fig.8can only causetransitions between different statesin radial direction,
and if a rotation of phase space leaves the system properties unchanged,
the boundary conditions are still sufficient to guarantee the presence of
detailed balance.

le

We
[
R

2otz e=*Se"Toe
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|

N

Fig. 8. Detailled balance in a two-dimensional array of states with transitions between
neighbouring states

Detailed balance due to symmetry is of special importance for sta-
tionary nonequilibrium systems in the vicinity of a symmetry changing
instability. For such systems an expression for the potential ¢°* was ob-
tained in Section 3.2. This expression can be inserted into Eq. (2.24) in
order to obtain an equation of motion. If theexternal forcesacting on the
system enter this equation of motion only by thederivative d¢*/0w, and
not by {r*}, detailed balance has to be present in the stationary state
because of symmetry, for the following reason. The external forcesdeter-
mine the coefficient a in Eq. (3.27) and are thus coupled to the system
only by a second order invariant; this coupling can only cause transitions
between states having different values of the second order invariant;
the boundary conditions are sufficient to guarantee detailed balance
with respect to these transitions. Transitions between states without
change of the second order invariant are not influenced by the external
forcesand, hence, arein detailed balance as well. Thisgeneral mechanism
explains why many of the stationary nonequilibrium systems which are
considered in part B have the property of detailed balance.

4.2. ThePotential Conditions

In this section, we derive the conditions which have to be satisfied by
the drift and diffusion coefficients of Eq. (2.10), in order to guarantee
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detailed balance in the stationary state [29]. To this end we solve Eq.
(4.5) for P({w}|{w');7; {A))and insert the resulting expression into Eq.
(2.10), which P must satisfy. The equation for P({w'}{{w}; z;{l)) which
we obtain in thisway, is simplified by using the time independent equa-
tion d motion for the stationary distribution W:. It takes the form
{0/0t + [Ki({w}; {4}) — 0K ({w}; {1})/Ow,
+ K ({w}s {4}) 0¢°({w}; {A})/0w, — 3 Ku({w}: {2} 6/0w,] 6/0w;}
PU{wH{w};t:{1))=0. (4.7)

Thisequationis now compared with the backward equation (2.12), which
we may rewrite in the form

{8/00 — (Ki({wh) T $Kul{w}) 8/ow) 90w} PUw (W} : {A)=0 (48)

by substituting

W) - (A D) (49)

and introducing the notation

K; ({w}; {2)) = &Ku((W}; {4})

Izik({w}; {1}) = &g K, ({W}; {Z}) .

Eliminating the time derivative from Egs. (4.7), (4.8) we obtain the

identity .

0:{(6Kik/6wk_Ki_IZi—Kik ad)s/awk)"'_%(Kik_Kik) 0/0w,}
-OP((WYI{W} ;75 {2}y 0w,

(4.10)

(4.11)

which holdsfor al times. All quantitiesinthecurly bracketsare functions
of {w)and {A).For : =0, P isa b-function according to theinitial condi-
tion (2.7). Multiplying EqQ. (4.11) by an arbitrary function F({w'}) and
integrating over {w') for =0, we obtain an identity, which contains
terms linear in the first and second order derivatives of F. Since F and
al its derivatives are arbitrary, the coefficients of al terms must vanish
separately. Thisyieldsthe potential conditions

Kul{w}; {2) = g6 Ku ({W}: {1}) (4.12)
and

D, — 30K, /ow,= — 1K,, 0¢°/ow, . (4.13)
In Eq. (4.13)we introduced the "irreversible drift"

D({w}; {A}) = H(Ki({w}: {A}) + & Ki({#}; {1}) (4.14)
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which transforms like w; if time is reversed. Egs. (4.12), (4.13) can be
combined with Eq. (2. 10)to yield

oJ;Wi/ow;=0. (4.15)
Here we introduced the "reversible drift"

J({w}; (A1) = HK.({w}; (1)) — &, K.({W}; {4}) (4.16)

which transforms like w; if time is reversed. The drift coefficient K, is
given by the sum

K;=D +J. (4.17)

So far we have shown that the potential conditions (4.12), (4.13) are
necessary for the compatibility of Eq. (2.10)with the Cond|t|on of detailed
balance (4.5). In order to show that they are also sufficient, we derive
now the symmetry relation (4.5) from the conditions (4.12), (4.13) by
assuming that the Fokker-Planck equation and its adjoint (2 12) hold.
Since Egs. (2.10), (4.12), (4.13) hold, the identity (4.11) is certainly ful-
filled. Using Eq. (2. 12)|n itsform (4.8), we may work from Eq. (4.11 ) back-
wards and obtain the Fokker-Planck equation (2.10) for the quantity
PO YW} T3 {2 Wi} {2)).

The drift and diffusion coefficients of this Fokker-Planck equation
depend on {w),{A). By assumption, the same equation with the same
initial and boundary conditions holdsfor thequantity P({w}|{w");z; {A)).
In as much as the Green's function for the Fokker-Planck equation
with natural boundary conditions is unique apart from a normalization
constant N, we may equate the two quantities

P{w}{#}; 15 {A) Wi(W}; {2) = N({(w'}; {A) PUWHI{w'}5 75 {A)) . (4.18)

Integrating over {w) we obtain

Wi} {4 =N({w}; {4} (4.19)

whereby Eq. (4.18) is reduced to the relation (4.5). Hence, the poten-
tial conditions (4.12), (4.13) and the detailed balance condition (4.5)
are equivalent for aII systems which are described by Eg. (2.10) and
the backward equation (2.12).

The potential conditions (4.12).(4.13)impose severe restrictions on the
coefficients {D), {J), and K;, of the Fokker-Planck equation (2.10).
From Eq. (4.13) we obtain by differentiating

0/ow; {Ki; (0K, /0w, —2D)} = 0/0w; {K};; (0K, /0w, —2D,)} (4.20)
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where the existence of K;; ' is assumed. From Eq. (4.15) we obtain, by
eliminating Wi with the help of Eq. (4.13),

aJi/awi_JiKi_ll(aKlk/awk_2Dl):O . (4.21)

Specia cases of these conditions have already been discussed in the
literature on stationary nonequilibrium systems [20, 21]. Their practical
importance in laser theory hasalso been recognized [32]. For systemsin
thermal equilibrium detailed balance is a general property. Hence. the
potential conditions have aways to be satisfied in equilibrium theory.
In fact, alook at the general Fokker-Planck equations, derived for sys-
temsnear thermal equilibrium, confirmsthat the potential conditionsare
satisfied by the drift and diffusion coefficientsof these equations[33, 34].

4.3. Consequencesof the Potential Conditions

The meaning of Egs. (4.12) — (4.17)is analyzed best by a comparison
with the more general Egs. (2.20), (2.22).First of al, we note that (J),
defined by Eq. (4.16), is the drift velocity in the stationary state

Jo=r. (4.22)

13 T

Since J; transforms like w; (if time is reversed), J; describes all reversible
drift processes. The remaining part of K; isgiven by D; and describes al
irreversibledrift processes. Wefind, thdrefore, that the general decomposi-
tion of the total drift into two parts, asintroduced in Eq. (2.22), coincides,
in the presence of detailed balance, with the general decomposition of
thetotal drift into a reversible and an irreversible part. The general result
of the preceeding section can now be formulated as follows:

Systems, described by Egs. (2.10), (2.12) are in detailed balance in
their stationary state, if apd only if the probability current in the stationary
state isthe reversible part of the drift. We note that. in detailed balance,
cyclic probability currents are not forbidden altogether; only irreversible
probability currents are not allowed.

By introducing the potential conditions(4.12),(4.13), intothe Langevin
Egs. (2.24) we obtain

w;=J; — 37K, 0¢°/0w, + gij(%agkj/awk +£&)). (4.23)

These equations show the close analogy which exists between systems
near equilibrium and systems near stationary nonequilibrium states [30].
Eq. (4.13)is the analogue of the linear, phenomenological relations of
irreversible thermodynamics [13] between the "generalized forces",
represented by the derivatives of ¢°, and the "generalized irreversible
fluxes", represented by the irreversible drift. The potential ¢* plays the
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role of a thermodynamic potential, both, in its static and its dynamic
aspects. The diffusion coefficients K;, are the analogue of the coefficients
in the linear relations between fluxes and forces. Egs. (4.12) are the
analogue of the Onsager-Casimir symmetry relations [35, 36] for these
coefficients.

The potential conditions (4.12), (4.13) have considerable practical
importance, since Eq. (4.13)givesn first integrals o the time independent
Fokker-Planck equation for W .These first integrals may be used in
two different ways:

i) It is possible to determine the stationary distribution
Wi ~ exp(— ¢°) from Eq. (4.13)by the lineintegral

¢'= _2,[Ki7cl [Dk_%aKkj/awj] dw; (4.24)

if the drift and diffusion coefficients are known. Eq. (4.13) will be used
in this manner in Section 8.

iiy It is possible to determine the irreversible drift (D), if the dif-
fusion matrix K;, and the stationary distribution W7 are known. In
this way it is possible to extract information on the dynamics of the
system from the stationary distribution. This procedure is of importance
in al cases in which symmetry arguments, like those of Section 3.2, are
sufficient to obtain the stationary distribution and the diffusion matrix.
We will useit in the applications of Sections6 and 7.

In al cases of vanishing reversible drift, J;=0, the quantity ¢* and
the diffusion coefficientsdetermine both the dynamics and the stationary
distribution. Eq. (4.13)is then a somewhat disguised form of the fluc-
tuation dissipation theorem, since it gives the dissipative drift in terms
of the fluctuations. It can be converted to the more usual form of the
fluctuation dissipation theorem by considering the linear response of
the variable w; to an external force, driving the variable w;. The response
isgiven by Eq.(3.35), if wetake A4; to be the momentum which is canoni-
cally conjugate to w;. The response function is then given by

¢ij(r) = —<{wil1) a¢s/awj> . (4.25)
By using Eqg. (4.13)we obtain
¢ (1) =2<K ;. (D, — 5 0K, ,/ow) wi(7)) . (4.26)

If we assume that K;; isindependent of (w)and use Eq. (4.23), we obtain
the more familiar form

(1) = —2K 35" dw() wlt — 1))/ (4.27)

In deriving EQ. (4.27) from (4.26) and (4.23) we made use dof the fact
that the fluctuating forces g;; £;(¢) in Eq. (4.23) give no contribution
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in EqQ. (4.26), since there, 7 is always positiveand all correlations vanish.
The results(4.26), (4.27)coincide with results obtained recently by Agar-
wal [27].

In al cases o vanishing irreversible drift D.=0, Eq. (4.13) yields
K, =0. In this case, the potential ¢° cannot be determined from
Eq. (4.13). It rather has to be determined from Eq. (4.15) in terms o
the reversible drift {J}. In most cases the latter can be derived from a
Hamiltonian H by splitting the variables {w} into pairs o canonically
conjugate coordinates {u} and momenta{u} and putting

JW=0H/bv; J®=—0H/ou,. (4.28)

In thiscase, our theory is formally reduced to equilibrium theory. The
stationary distribution can be taken to be the canonical distribution

W;~exp(—H/T) (4.29)

where T is some fluctuation temperature in energy units. The fluctuation
dissipation theorem (3.35) reduces to its equilibrium form. ¢*=H/T
determines both the dynamicsand the stationary distribution completely.

B. Application to Optics
5. Applicability of the Theory to Optical | nstabilities

In the second part o this paper we consider threshold phenomena in
nonlinear optics. Thresholds in laser physicsand nonlinear optics mark
the onset o instability o certain modes d the light field. In this section
we consider some common features d these instabilities and discuss
the relevance d the genera part A for laser physics and nonlinear
optics. In Section 5.1 we consider the validity o the basic assumptions
and givea review d the quantities which connect the theory and photo-
count experiments. In Section 5.2 we give an outline o the microscopic
theory o fluctuations in lasers and nonlinear optics. This outline is
necessary, since we will make use d the microscopictheory in Section 8.
Furthermore, the results d the phenomenological theory in Sections
6 and 7 will frequently be compared with results o the microscopic
theory. In Section 5.3 we discussthe general analogy betweeninstabilities
in nonlinear optics and second order phase transitions. These analogies
areaspecial case o the general connections between symmetry changing
instabilities o stationary nonequilibrium states and second order phase
transitions. Thelimits d this analogy, which are due to the geometry o
optical systems, are also discussed.
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5.1. Validity of the Assumptions; the Observables

Before applying the considerations o part A to optical examples, we
have to check the validity d the basic assumptions and have to find the
observablesd photo-count experiments.

a) The Assumptions

i) Stationarity implies the time independence d all external influences
on the system, on the adopted time scale d description. Hence, al
parameters which characterize a given optical device, like temperature,
distances and angles between mirrors, intensity and mode pattern o
pump sources, have to be stabilized on that time scale. This stabilization
presents experimental difficulties, which could be overcome for single
mode lasers [10]. For most other optical oscillators stabilization is
more difficult, either because their mode selection mechanisms are less
efficient (e.g. parametric oscillators), or because they depend more
critically on properties d the pump (e.g. Raman Stokes oscillator).
Nevertheless, recent technological progress[37] should makea stabiliza-
tion o other oscillators, like parametric oscillators, over sufficiently
long time intervals, possible.

ii) The assumption d the validity d a Fokker-Planck equation can be
split into the Markoff assumption and the diffusion assumption. In non-
linear optics, a Markoff description is usually provided by the amplitudes
o the optical modesand the variables d the medium which account for
the nonlinear interaction (cf. 5.2). In our phenomenological theory, the
variables, which are used to describe the system, are the amplitudes o
the unstable modes alone. Whether this restriction of the number of
variablesis justified or not depends on whether the system is sufficiently
close to the instability, since the lifetime o the fluctuations o the un-
stable mode amplitude becomes large in the vicinity d the instability.
The necessary number o variables also depends on the time scale o
observation, which is determined by the rise time d the photo diode
(~107?sec) of the detector. Theoretical [38] and experimental [39]
investigations o a possibly non-Markoffian behaviour o the single
mode laser amplitude on the nsec time scal e have been made. Experimen-
taly, non-Markoffian effectshave not been observed. Hence, the Markoff
assumption seemsto be wdl justified,at least for singlemodeinstabilities.

The diffusion approximation can generaly be justified for al optical
modes with sufficiently high intensities. Fluctuations in optical modes
are due to processes which involve the creation and annihilation d
singlelight quanta. Jumps of the quantum number by + 1 can beapprox-
imated by a continuous diffusion, if the total quantum number is
sufficiently large.
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Together with the Fokker-Planck equation, we introduced natural
boundary conditions in part A. Their physical basisin nonlinear optics
isthecondition, that infinitefield amplitudes occur with probahility zero.

iii) In most optical applications we will restrict ourselvesto systems
with detailed balance. This assumption can be justified on genera
grounds only for special cases, most importantly the single mode laser
treated in 6.1. In all other cases, it impliesa restriction to specia systems,
whose parameters are chosen in such a way, that detailed balance is
guaranteed. The potential conditions (4.12), (4.13) are a convenient
tool to decide whether a system isin detailed balance or not.

b The Observables

In most experiments o laser physicsand nonlinear optics the interesting
observables are the intensities o the light modes. Furthermore, the
stability of the state of the system, i.e. the reproducibility o the results,
is of interest. Theoretically, thisinformation is provided by the descrip-
tion which neglectsfluctuations, i.e. by the set of Egs. (3.4). As was shown
in Section 3, the symmetry changing instabilities have the most drastic
effectson thislevel of description. They manifest themselvesby adramatic
increase in the intensity o the instable mode, if treshold is passed [11].
In 3 it was also shown that the location of the minima of ¢° and the
drift velocity {r*} determine the size o the stationary intensities and
their stability. ,

In the last few years a growing nuntber of experimentalists have been
concerned with the statistical properties d the emitted light. Both the
theoretical and the experimental details of their measurements have
been the subject of many papers [8, 10, 18, 19]. Therefore, we restrict
ourselves to a brief survey here. The quantity, which is on the basis
of our phenomenological theory, is the stationary distribution of the
mode amplitudes. It is 'closgly connected with the most fundamental
guantity for photo-count experiments, the stationary photo-count
distribution p(n, T, t).It givesthe probability of counting nphotoel ectrons,
which are generated by the light field in a photodiode within a given
timeinterval Tat time t. The photo-count distribution p(n, T, t) depends
on the statistical properties o the light field, since it is determined by
averaging over a Poisson distribution

pin, T, )=(n 17" A(T, t)" exp(— (T, 1))) (5.1)
whose mean value 7 is proportional to the average of the light intensity
1(r) [40]

1+T

AT t)=a | I¢)dt. (5-2)
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a gives a measure o the efficiency of the counting method. The average
in (5.1) has, in general, to be taken with a probability density which is
a functional of the intensity I(¢) for dl times t<t <t+T However,
if theinterval T (whichis determined by the rise time of the photodiode)
is much shorter than the time scale on which I(t) varies, Eq. (5.1) may be
reduced to

p(n, T,0= | dI n! "N ad Tyte T Wil 1). (5.3)
0

The measurement of p(n, T, t) gives an indirect determination of W7.
W can also be characterized by its normalized moments <I(2)*/<I(£)>*.
They are given in terms of the normalized factorial moments n® of the
photo-count distribution,

nO(T,)=(n) *Y nin-k)! ' pn, T1), (5.4

by the relation
A/ AWM =n®(T,1). (5.5)

Usually, a comparison d the theoretical and experimental results for
the first few moments is used, to fit the unknown parameters in W7.
Increasing the accuracy in the determination o the distribution p(n, T, t)
means to increase the number o known normalized factorial moments
n®). Thereby one increases the number of known normalized moments of
W3, and hence, the precision with which W7 is known. Therefore, photo-
count experiments can test @ over the whole configuration space,
whereas intensity measurements can only contain information on the
(sharp) minima of ¢°.

Similar to single photo-count distributions one can measure joint
photo-count distributions by determining the number o photoel ectrons
generated at different times. They provide an experimental method to
determine the joint probability densities, introduced in Eg. (2.2). In
most cases, however, one is content with the measurement of the lowest
order moments of the joint distributions. This isdone, e.g., in Hanbury-
Brown Twiss experiments [41]. There, the photocurrents, produced
in two or more photodetectors, placed in different space-time points
(e.g- by beam splitters and electronic delay), are electronically multi-
plied and averaged over atimeinterval. In thisway oneisableto measure
multi-time correlation functions, e.g. the autocorrelation function
et t) I(1)> — {I(1))?, or cross-correlation functions like (1, (t +t) I, (1))
— L1t <I,(1)>, if more than one mode o the electromagnetic fied
is excited. These quantities contain information about the dynamics of
the system (e.g. relaxation times, fluctuation intensities). They can be
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calculated, either by the microscopic theory, which is reviewed in the
next section, or by the phenomenological theory. While the microscopic
theory is too involved to be applied to complicated problems, the pheno-
menological theory can aso be applied to more complicated situations,
but isthen restricted to cases where detailed balance is present.

5.2. Basic Conceptsof the Microscopic Theory

The general procedure of the microscopic theory is shown in a block
diagram in Fig. 9. It was originally developed for the analysis of lasers
(cf. [8]). Later, it was shown that the same procedure can be used in
nonlinear optics. The starting point is a Hamiltonian which contains
the following dynamical variables(operators):

i) The amplitudes of the electromagnetic field modes, described by
boson creation and annihilation operators,

ii) the operators, describing the atoms o the medium, which obey
anticornmutator relations,

iii) a number o operators, describing incoherent pumping of the
atoms of thefield modes (e.g. in lasers), as well as dissipation and fluctua-
tion due to the coupling to a number of thermal reservoirs, and

iv) c-number forces, describing external, coherent pumping (e.g. in
parametric oscillators or Raman oscillators).

The approximations, which are usualy made when the Hamiltonian is
specified, are y

i) the oHf consistent restriction d the field operators used, to the
modes of the electromagnetic field which are strongly excited in the
particular process under consideration,’®

ii) the neglect of al interactions between the elementary excitations
of the medium ("atoms"), except for the interaction mediated by the
electromagnetic fields,

iii) restriction to resonant one-quantum processesfor theinteraction
between light and matter (i.e. the dipole approximation and the rotating
wave approximation).

Knowing the Hamiltonian one can write down the von Neumann
equation of motion for the density operator of the wholesystemincluding
the reservoirs. The main part of the theory consists now in a sequence of
steps which simplify thisequation, until it can be solved.

The first step is the elimination of the reservoir variables, which is
most elegantly achieved by an application o Zwanzig's projector
techniques, combined with a weak coupling approximation, and a
Markoff assumption [43]. The latter implies that the correlation times

° The only exemption to this rule, known to the author, is the interesting work of
Ernst and Stehle [42].
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Hamiltonian including
modes, atoms, reservoirs

t

Von Neumann equation for
density operator of total system

V Elimination of reservoirs

Equation for reduced density operator
including modes, atoms

Y Elimination of atoms

Equation for reduced density operator
including modes

Y Adiabatic elimination

Equation for reduced density operator
including instable modes

Y C-number representation

Equation for quasi-probability density
of the form (2.5)

Y diffusionapproximation
classical limit

Fokker-Planck equation (2.10)

\

Probability densities,
moments, correlation functions

Fig. 9. Scheme of the microscopic theory

o thereservoirs are very short compared to al remaining time constants.
As a result one obtains a "master equation” for the density operator
in the reduced description, which contains the field modes and the
variables of the medium. The reservoirs are now represented by a set
o given external forces, described by time-independent parameters {1}
and a sat of damping and diffusion constants. The latter are connected
by some fluctuation-dissipation relations which depend on the various
reservoir temperatures.
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The next step is the elimination of all variables which do not parti-
cipate in the interaction with resonant real processes, but rather with
nonresonant virtual processes. Usualy the atomic variables play this
role in nonlinear optics. This elimination can be achieved by a method
described in [44], which is equivalent to an approximate unitary trans-
formation. The remaining equation for the reduced density operator
then describesonly resonant interaction processes, whose coupling con-
stants are obtained by the foregoing elimination process.

In the next step one makesimportant use o the fact that fluctuations
are most important near thresholds, or instabilities. At these instabilities
the inverse relaxation time of one d the modes becomes very small and
changessign. Hence, in the vicinity of an instability, there existsa number
of variables which move sowly compared to al remaining variables.
The latter may be eliminated by assuming that they arein a conditional
equilibrium with respect to the slow variables(adiabati c approximation).
The procedure is similar to the elimination o the reservoirs. The only
differenceis the necessity of also including higher order terms in the
weak coupling expansion, in order to get finite results at threshold
(for the example d the single mode laser see [38]). The remaining equa-
tion for the density operator d the once more reduced system holds
only in the vicinity o the particular instability which is considered.

In the next step an additional simplification is achieved without
further approximation by the introdugtion o a quasi-probability density
representation for the density operator '° (for referencescf. [8]). In this
representation all operators are replaced by c-number variables. The
equation, which finaly emerges from this procedure has the structure
o Eg. (2.5).

Thefina simplificationistheintroduction o thediffusionapproxima-
tion. Fluctuations change the quantum numbers of the modes by + 1.
For modes with large average quantum numbers 7, the fluctuations
may be represented by a continuous diffusion. It is important that
this approximation is made only at the end o the foregoing procedure,
since, at the beginning, weakly excited degrees o freedom are also
contained in the Hamiltonian.

The same argument which justifies the diffusion approximation can
be used to apply the correspondence principle and take the classica
limit of the final equation d motion. In this limit, the quasi-probability
density is reduced to an ordinary probability density, as introduced in
2.1. By the procedure outlined above, a Fokker-Planck equation o the
form (2.10) is obtained, which now has to be solved. Although this is
a classical equation, it still describes quantum effects,since the fluctua-

% This step could also be done before the elimination procedure
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tions have a pure quantum origin. The fluctuations represent the small
but measurable effects produced by the spontaneous emission process,
which is conjugate to the stimulated processgiving rise to the instability.

The advantage o the microscopic theory is the possibility to derive
the drift and diffusion coefficients from first principles. Its disadvantages
are its complexity, which restricts its applicability to simple systems,
and the necessity for the introduction o many different approximations.
In fact, many results o the microscopic theory are completely indepen-
dent o the special form o the initial Hamiltonian and are only due
to the occurrence d a symmetry changing transition. This is the main
message conveyed by the phenomenological theory. Some o the results,
which are independent o the specia form d the initial Hamiltonian,
are discussed in the next section and compared with phase transitions.

5.3. Threshold Phenomenain Nonlinear Optics and Phase Transitions

This section is devoted to a comparison between phase transitions in
equilibrium systems and threshold phenomena in nonlinear optics. Ana
logies o this kind have been pointed out previouslyfor the laser [45, 46]
on the basis of the microscopic theory. Here, we discuss these analogies
from a phenomenological point of view. We restrict ourselvesto systems
with detailed balance. Then the formal analogies between both classes
o phenomena are obvious from the considerations in Sections 3, 4. It
is sufficient to note that ¢° plays the role d a thermodynamic potential,
both, in the static and in the dynamic domain, and that ¢* was con-
structed in analogy to the Landau theory o second order phase transi-
tions in Section 3.2. However, a discussion o the analogies in more
physical terms seems to be useful in order to appreciate their extent
and their limits.

In both cases the basic instability arises from two competing pro-
cesses. A phase transition®® is determined by the competition between
the thermal motion and a collective motion. The latter is caused by
the interaction between the microscopic degrees o freedom, which, in
the mean field approximation, is replaced by a nonlinear interaction
o the microscopic degrees o freedom with a fictitious mean field. The
nonlinear interaction gives rise to a positive feedback into a collective
mode o the system. If the collective motion dominates, the mode be-
comes unstable. Its amplitude grows to a finite vaue, which is the order
parameter d the phase transition. Observable order parameters must
have zero frequency, since modes with finite frequency necessarily

11 A qualitative discussion of phase transitions. which is suitable for our purposes
here, isgiven in [47].
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dissipate energy. At zero frequency thermal fluctuations are the
dominant noise source.

Optica instabilities are governed by a competition between loss and
gain in certain modes. The gain is due to a nonlirear interaction of the
atoms (or elementary excitations) of the medium with the electromagnetic
field, which plays the role of a mean field. However, contrary to the
latter, the electromagnetic field is not fictitious. The characteristic length
of the interaction is much longer in optica system (~1m) than
it is in systems with fictitious mean fields, where it is a microscopic
quantity.

The mode, which becomesunstable by a feedback mechanismsimilar
to the one before, hasafinitefrequency. Thisis possible, sincethe energy
dissipation in this mode can be compensated by a stationary energy
flow into the system. Therma fluctuations are unimportant at optical
frequencies. Instead, spontaneous emission processes are the main
source d fluctuations.

In both cases, the instable mode d the system, if quantized, has to
be a boson mode, because otherwise no positive feedback into this
mode would be possible.

An important difference between usual phase transitionsand optical
instabilities comes from the difference in spatia dimensions. Optical
devices have in most cases a one-dimensional geometry, and even the
lengths in this single dimension are usually short compared to the co-
herence length o the electromagnetic field. Thus, the analogy has to
be restricted to one and zero dimensional systems. In 3-dimensional
systemsthe coherencelength d the order parameter fluctuations diverges
at the critical point. In the case d a continuous broken symmetry,
the order parameter fluctuations contain an undamped zero frequency
mode (Goldstone mode), which displacesthe order parameter around a
fixed, stable value, which breaks the symmetry. In 1 and O-dimensional
systems the order parameter fluctuations contain a damped zero fre-
gquency mode (diffusionmaode), which carriesthe order parameter through
a whole set o values, thereby restoring the symmetry [12]. The latter
phenomenon takes the form o a phase diffusion in nonlinear optics.
Besides this diffusionmode, there occur also fluctuations in the absolute
value of the order parameter. These fluctuations are known to show a
drastic dowing down in the vicinity o the critical point, because o the
close matching between thermal and collective motion near that point
{48]. Sowing down is also found near optical instabilities, where it is
dueto a close matching between the loss and the gain. At threshold, the
total loss rate is equal to the sum d the gain by induced emission and
the spontaneous emission rate. The spontaneous emission rate issmaller
than theinduced emissionrate by afactor 1/5, where7 isthe mean number
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o quanta in the mode. If 7 would be infinite, a complete matching
between loss and gain would be achieved at threshold and the dowing
down would be critical [49].

In general, the dowing down decreases the decay rate d order
parameter fluctuations at threshold up to a small but finite value, which
is proportional to 1/n.

6. Application to the Laser

The general theory d part A is applied to the analysis d fluctuations
of lasersin various operation modes. The example d the single mode
laser, treated in 6.1, exhibits, in the smplest way, the general features
outlined in part A. As this example has also been studied most carefully
by experiments, it has to be considered as a prototype for the more
complex examples studied in the later sections. In Section 6.2 we apply
our theory to multimode operation in cases where mode coupling is
only due to the intensities d the various modes, and no phase coupling
is present. The systems treated in the Sections 6.1 and 6.2 represent
examples with detailed balance. In Section 6.3 the case o multimode
operation with phase coupling by various mechanismsis considered. In
the case o sdf-locking, detailed balance is, in general, not present,
due to irreversible cyclic probability currents through states with
different relative phase angles o the modes. These currents make the
analysis much more difficult, and only the simplest cases have been
considered. The same applies to examples where phase interaction is
forced from outside. However, some models, which are discussed in
the literature, have the detailed balance property. Therefore, they may
be analyzed by our methods.

In Section 6.4 we consider a system with one spatial dimension,
the light propagation in an infinite laser medium. Two different states
o the system are considered:

i) We treat the state which is most similar to single mode operation,
but includes spatial fluctuations o the mode amplitude. This example
shows most clearly, that a complete analogy to one-dimensional systems
with complex order parameters exists (e.g. one-dimensiona supercon-
ductors). The microscopic derivation o these results [46] originally
suggested the development o a phenomenological theory, based on
symmetry.

ii) We treat the state in which a periodic sequence d short pulses
travelsin the medium. The phenomenological theory is applied in order
to show, how fluctuations(i.e. spontaneous emission) destroy periodicity
over long distances.
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6.1. SingleMode L aser

We consider a single mode o the electromagnetic field in resonance
with externally pumped two-level atoms. The microscopic theory of this
problem has been completely worked out since 1964 [50, 8). Never-
theless we include this case in our analysis, because it exhibits most
clearly the basic line of reasoning.

The threshold of laser action marks an instability of a mode of the
electromagnetic field, whose electric fieldstrength we may write as

E(x,1)=(B exp —iwyt + f* expiwgt) f(x). (6.1)

In (6.1) w, is the laser frequency, which we assume to coincide with the
atomic frequency, f(x)is the normalized spatial pattern of the laser
mode (running or standing wave), and 8 is the complex mode amplitude.
Our general set o variables {w) isformed by

{w} ={w;,w;} ={Re B, Im B} (6.2)

The time reversa transformation behaviour d w,, w, may be derived
from Egs. (6.1), (6.2) by noting that the electric field strength remains
invariant. Hence, we find

V“)l:wl, V~V2=—‘w2. (6'3)

Theexternal force |, which keeps the system sufficiently far from thermal
equilibrium, is supplied by the mechanism which inverts the electronic
population o the two atomic levels phrticipating in laser action.

Now wedeterminethe potential ¢5(w,, w,) from symmetry arguments.
It has to beinvariant against changes of the phase angle o the complex
mode B. In the completely symmetric state we have w} = w% =0. Hence
the quantities {Aw*({1})} defined in Eq. (3.21)are given by {w’, w3}. The
potential ¢° is now obtained as a power seriesin {w,,w,) containing
only invariants formed by these quantities. The only invariants up to
fourth order, which can be formed by these quantities, are (w§+w§)
=|B|? and (w? + w2)2. Hence we obtain

¢'= —a(witw) b(witwi?. (6.4)

The coefficient of the second order invariant has to change sign at
threshold. Hence, we may put

a=a(A-1), b>0, a>0. (6.5)

I, is the threshold value o the pump parameter |. Since ¢* must have
a minimum at w; =w, =0 for | <A, we have a>0. The forms o ¢*
for | 1, are shown in Figs. 4, 5 respectively. The results (6.4), (6.5) are
in complete agreement with the results obtained from the microscopic

Statistical Theory of Instabilitiesin Stationary Nonequilibrium Systems 49

theory [51, 19, 8]. They are d central importancefor the photon statistics
of the single mode laser and have been checked experimentally with
great care [52, 10]. Complete agreement between theory and experiment
has been obtained.

In the next step, we derive the equation o motion (2.10).We assume
that the diffusion matrix can be taken asindependent of w,, w,. Because
o phase angle invariance its only possible form is then

_(a 0
wely ]

where q is another phenomenological constant. By applying Eq. (2.22)
we obtain

Ki= — 349 09%0w;+r; (6.7)
wherer{ has to satisfy the equation
oriexp(—¢°)/dw;=0. (6.8)

Since the first term in Eq. (6.7) is a power seriesin {w) we may also
expand 1 as a power series. Observing phase angle invariance and the
condition (6.8), we obtain

i =(a —2b' |B}) wy (6.9)

where a', b’ are two real constants. Eq. (6.9) shows, that {#*} transforms
like{w) and, hence, is a reversible drift. On the other hand { qd¢*/ow}
transforms like { w) and is the irreversible part o {K).As was proven
in section (4.3) this is equivalent to the condition o detailed balance.

Since the reversible drift J; ,=ri ,, as given by Eqg. (6.9), changes
only the phase angle of § and leaves|g|* unchanged, it describes detuning
effects. Since we assumed exact resonance between the atomic transition
and themode g o thefield, we may put & =¥ = 0. The complete Fokker-

Planck equation (2.10) now reads
OP/dt= = (2/0w, d(a= 2bI%) w, P)= (/ow, A(a= 26187 waP) (o1
+ 14(3*P/ow? T+ 6*P/ow?). '

This result is again in complete agreement with the result of the micro-
scopic theory [51] and with all experimental data obtained so far. The
phenomenological parameters g,a, b are determined experimentally as
follows [19]: ga as a function | is obtained by fitting the experimental
and theoretical results for the dimensionless quantity

BB = (n?y — (np[{n)? (6.11)
for different values of |.
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Theright hand side of Eqg. (6.11) contains moments d the photocount
distribution (cf. Egs. (5.4), (5.5)) which are accessible experimentally.
The values of g and b are determined by measuring the average number
of photons, <|812>, and the linewidth o the intensity fluctuations, Vg,
at threshold. These quantities determine b and g by the relations [53]

B2y = (mb)" 25 1jz;_=q.)/b-5.854. (6.12)

For a detailed presentation of the results obtained by the evaluation o
Eq. (6.10), we refer to [53, 19, 8]. In Fig. 10 we show the resultsfor the
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Fig. 10. The correlation times of amplitude fluctuations () and intensity fluctuations
(r;) as calculated from Eq. (6.10)in [53] (note the different scales for t; and )

correlation times ¢, and 7, o the fluctuations d the amplitude 8 and
the intensity |B|?, respectively [53]. They show very clearly the Slowing
down which is predicted for a symmetry changing transition.

The phenomenological approach to laser theory was recently used
by Grossman and Richter [54] — [56] to analyze the dynamicsof lasers
by a method which circumvents the use of Fokker-Planck eguations.
Their procedure runs as follows [54]:

1) The potentia (6.4) is extended to include a "kinetic energy” term
~ (i) =182
¢*=d|pI>—alpI* +b|f*. (6.13)
The new constant d hasto be positivefor normalization.

ii) Theexpression(6.13)is used asa Hamiltonian to generateequations

o motion for the amplitude 8. These equations are then modified by
adding phenomenological damping terms.
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iii) In order to determine correlation functions o the form
(F(B(D) - FL(B(to))), the equation of motion for Fy(8(t)) is solved with
the initial condition B(t,) = B,- The result is multiplied by F,(8,) and
averaged over B, with the distribution Wi ~ exp(— ¢°).

The same procedure is well known for systemsin thermal equilibrium
[17]. Thestepsii) and iii) amount to a replacement o the Fokker-Planck
eguation by a suitable simplified set o moment equations. Besides this
simplification, the most important difference to our procedure seems
to be the fact that, in the treatment [54, 56], the main motion o the
system is derived from a Hamiltonian and describes reversible processes
whereas in our formulation the whole motion (besides detuning) was
described by irreversible processes. Nevertheless, this procedure is
equivaent to ours, apart from the additional approximations which
are introduced by using smplified moment equations instead of the
Fokker-Planck equation. We show this by deriving a Fokker-Planck
eguation from the potential (6.13) in the same way as before. Our new
set of variablesis now

{w} ={w,, w,, ws, ws} = {Ref, ImpB, Ref, Imf} . (6.14)
They obey the equations

Wi=wy, Wy=w, (6.15)
from which we obtain the drift and diffusion coefficients

K,=w,, K,=w,, K,;;=0; K,=0. (6.16)

The diffusion matrix is taken to be constant and to preserve phase angle
invariance. Then, it must take the form

0000
0 000
L= 6.17
Klk 0 0 q2 0 ( )
0 0 0 g,
For the drift coefficients K5 , we obtain from Eq. (2.22)
Ky o= —3q200%0w;s 4+7154. (6.18)
From Eq. (2.20) we obtain
or exp(— ¢%)/ow; =0. (6.19)

If we determine r5 4 by a power series in {w) which contains w; 4 to
thefirst order and w,_, to the third order, (the accuracy being determined
by the accuracy of ¢°), and determine the coefficients o this expansion
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by Eq. (6.19), we obtain
=40 w,—3d ' d¢ow,, {6.20)
B=—Adowy—3d 1 0¢% 0w, , 6.21)

where dw is a real constant describing detuning effects. Neglecting
detuning wetakedw =0. Egs.(6.15),(6.20), (6.21)show that{ P} transforms
like a reversible drift. Therefore, detailed balance is present (cf. 4.3).
The same equations show, that the potential (6.13), in fact, acts as a
Hamiltonianfor generating the reversibledrift{ J} ={P}. Theirreversible
drift consists of alinear phenomenol ogical damping term. From Eq. (6.21)
we obtain the Fokker-Planck equation

oP _[_ 0 @
ot ow, °

—1, 2y
o T (wyd™ @ —2bIAP) — g, dwy)

(6.22)

0 (wod™ YHa—2bIB|1Y) — q,dw,) + 1 ﬁ+6_2 P
Gwa 2 a q,4wy) T 24, 6w§ ﬁwﬁ .

w J—
b Ow,

Its stationary solution is, o course, given by Eq. (6.13) with
W: ~ exp(— ¢°). A method, which allows us to find the time dependent
solutions of Eq. (6.22)if the solutions o Eq. (6.10)are known, isdescribed
in [20]. Eq. (6.10) is, of course, obtained from Eq. (6.22), if ws, w, are
eliminated as rapidly relaxing variables by an adiabatic approximation.
The parameter g o Eqg. (6.10)is then expressed in terms of the two param-
etersq,,d o Eq. (6.22) by q=(g,d*)*.

6.2. MultimodeL aser with Random Phases

We now generalize the considerations d the preceding section to include
the case of an arbitrary number o simultaneously excited modes. We
assume that the mode amplitudes vary much more dowly in time than
the atomic variables of the laser medium, whose characteristic timesare
given by the pumping time and the atomic relaxation times. Thus, the
variables {w} are the complex mode amplitudes 8,. Furthermore, we
assume that the laser operates in a region where the phases of all modes
are independent from each other. Experimentaly, thisisa wel known
operation region.
The potential ¢* is given by the expansion !2

d)s: - Zavlﬂviz + Z' bvv'|)8v|2 Iﬁv"z (623)

2 The summation convention isdropped in the following.
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if we restrict ourselves to moderate field strengths. The constants a,
and

bvv’ = bv’ v (624)

are real constants. In order to meet the natural boundary conditions
for Wi, at least one of theinequalities

bvv’ > 0 5 bvv bvv/ > bsv’ (625)

must hold. The coefficientsa, change sign, if the intensity of the external
pump, described by the parameter A passes the threshold value A,
A, givesthe threshold of mode v in the absence of all other modes. There-
fore, we may put

a,=a,(A—4) (6.26)

with positive constants «,. An expression d the form (6.23) has also been
obtained from the microscopic theory [57], and was used in [56] to
investigate the dynamics o a two-mode laser. The shape d the potential
(6.23) may take on quite different forms depending on the relative size
o the various coefficients. Some typical casesfor two modes are shown
in Figs. 11-14. Well below thethreshold of thefirst mode W; ~ exp(— ¢°)
is a multi-dimensional Gaussian, centered around f,=0 (cf. Fig. 11).
Passing through the threshold of the first mode, the Gaussian becomes
first very broad and finally the term b,,|8|* in Eq. (6.23) has to be
taken into account in order to determine the form of Wj (cf. Fig. 12).
If the pumping is further increased, the second mode could pass the
threshold, if it were not suppressed by the presence o the first mode
(cf. Fig. 13). For sufficiently hard pumping the second mode will finally
start oscillating at a threshold whichis determined by the bare threshold
o the second mode and the intensity o the first mode (Fig. 14). The
next modes will show a similar behaviour.

The form o the potential (6.23) can be tested experimentaly by
photocount experimentsin which photons coming from different modes
are counted separately.

In order to derive equations o motion from the potential (6.23) we
assume that detailed balance holds in the stationary state. The physical
meaning of thisassumption will be considered later. The diffusion matrix
is assumed to be diagonal with respect to different modes. Furthermore,
it isassumed to be constant and to preserve the phase angle invariance of
the modes. Applying Eq. (4.23) to the potential (6.23), we obtain

B,=J,—q,0¢%3B% + F(0) (6.27)
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with
<Fv> == 0 9
FrO) Fy(tt 1)) =2q,6,,8(7), (6.28)

(R0 Fytt 1))y =0.
Thereversibledrift J, may be written asa power seriesin theamplitudes

Jv: _ivaﬂv_iZvi’lﬂv‘lz ﬂv (629)
v
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Q,, and dw, are found to be real, if the time reversal symmetry and
the phase symmetry is used. 4w, and £,, describe frequency shifts
due to the linear response and to nonlinear saturation effects. Eq. (6.24)
representsa power seriesexpansion of f, in terms o the modeamplitudes
up to thethird order. Thisexpansion isgeneral, apart from the restriction
to complete phase symmetry and apart from the symmetry relation (6.24).
Thus, Eq. (6.24) is the necessary and sufficient condition for the validity
o detailed balance in the present example. From Eq. (6.27) we redlize
that the quantity — g, b,,-18,|* 18,-]* has the physical meaning of an in-
duced normalized transition ratefrom v to mode v. Since the coefficients
for induced emission and absorption areequal, the normalized transition
rate in the opposite direction hasto be equal

qy bvv’ =4y bv’v . (630)
Therefore, the symmetry relation (6.24) holds, if

q9,=4y . (631)

ie., if the intensity d the fluctuating forces is equal for all modes. In
genera, this intensity is due to spontaneous emission into the modes.
Eq. (6.31) is satisfied, if the spontaneous emission is, at least approxi-
mately, constant over the spectral region d the modes. An explicit
treatment'of two-mode oscillation under the same assumptions wasgiven
in [56].

We now consider in somewhat more detail the states which are
described by the potential (6.23). Neglecting fluctuations, the stationary
states are obtained by d¢*/08,=0. This yidds

MBIE =418 + 200 Y by 1B 1B (6.32)

fromwhich we determine the mode intensities, and the threshold valuesA
at which new modes start their oscillation. The intensities o all modes
below threshold are zero. For the intensitiesd the modes above thresh-
old we obtain

BJ? =2 b} (A= 2,) (6.33)

where the sum runs over all modes above threshold. Each time when a
new mode passesits threshold, a new term has to be added on the right
hand side of Eq. (6.33). As a result, at each threshold, the intensities
|B,)> have a discontinuous derivative with respect to A. The pump in-
tensity, which is required to carry mode v through its threshold if the
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modes 1...(v— 1) are aready above threshold, is obtained by putting
1B.)>z0.

(6.34)

This relation can aso be used to determine the number o oscillating
modes v, if A is given. The results o Section 3 may be used to decide
whether the stationary state, described by Eq. (6.32), is stable. Since
the reversible drift (6.29) and the potential (6.23) satisfy Eq. (3.9),
¢° — Pt IS @ Lyapunoff function o Eq. (6.27) (the fluctuations F, are
till neglected). The trajectoriesin the stationary state obey the equations

s =B, {B*D) (6.35)

and are stable against all deviations from these equations since these
deviations increase ¢°. This result is very easily obtained here and
agreeswith the lessgeneral and more complicated linear stability analysis
o the microscopic theory [58]. We now also take into account the
fluctuationsdescribed by Eq.(6.23), by analyzing the threshold behaviour
o mode v under the condition, that the modes 1...v—1 are above
threshold aready. In the vicinity d its threshold, mode v will have
fluctuations with much longer life time than the fluctuations o the
other modes. Therefore, we replace the intensities o all other modes
by constant parameters I, and obtain

v-1
#=—(0-2 % b L) B +b B (6.36)
vi=1

This potential has the same form as the potential o a single mode laser.
The presence d the v —1 other modes manifests itsdf only in the shift
o the threshold value, as discussed in Eq. (6.34). Hence, each single
instability leading to a new mode is very similar to the single mode
case. This result is quite general and depends only on the condition
that the thresholds of different modes are wdl separated from each
other.

We close this section by pointing out an interesting analogy between
the present example d multimode laser action and turbulence in hydro-
dynamics. The onset d turbulence has been analyzed by Landau [59]
as a succession o instabilities o different modes of the velocity field
with independent phases. Each instability brings in a new randomly
phased mode of higher frequency and smaller wavenumber and increases
the number of arbitrary phases by 1 The resulting motion is highly
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fluctuationsdescribed by Eq.(6.23), by analyzing the threshold behaviour
o mode v under the condition, that the modes 1...v—1 are above
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We close this section by pointing out an interesting analogy between
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as a succession o instabilities of different modes d the velocity fied
with independent phases. Each instability brings in a new randomly
phased mode d higher frequency and smaller wavenumber and increases
the number o arbitrary phases by 1. The resulting motion is highly
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irregular and is quasi-periodic. In our example we also havea succession
of instabilities, each introducing a new arbitrary phase. Thetotal electric
fieldis given by the expansion

E(x,ty=Y (B,(t) exp(—iw,zt) f,(x) +c.c.) (6.37)

wheref,(x) are the resonator modesand w, are the resonator frequencies.
Each term in EQ. (6.37) contains an arbitrary phase. The total field
E(x,t) is quasi-periodic and consists d a statistical sequenced fluctua-
tion pulses [60].

6.3. Multimode L aser with Mode-L ocking

In many cases, different laser modes are coupled, not only by their
intensities, but also by their phases. This coupling generaly occurs
when satellitesd laser modes, which are in resonance with neighbouring
modes, are created by external or internal modulation [8]. Due to the
phase coupling the different modes interfere and produce periodic pulse
trains. If the frequency difference between the phase-coupled modes is
small, one may obtain a "frequency locking™, ie., a composite oscilla
tion of the mode and its satellite with equal frequency. Typical examples
o frequency locking occur inlasers with Zeemann splitted transitions
f61], or in lasers with a coupling between the axial and the closdy
neighbouring nonaxial modes (e.g. due to spatial inhomogeneities, cf.
[62]). We start by making the same general assumptions as in the
beginning of 6.2. In particular we assumethat the dynamicsiscompletely
described by the mode amplitudes. Furthermore, we restrict ourselves
to the case of moderate amplitudes, so that we may expand ¢* in powers
of the mode amplitudes. Averaging over timeswhich are long compared
to an optical period we obtain

$== 2 an BBt L by BRBEBLB. (6.38)
where higher order terms were neglected. We note that the products
occurring in Eqg. (6.38) have to be time-independent in order to survive
the time average. Therefore, we have resonance between the interacting
modeswith frequenciesAw,

40, +Aw,,=Aw,, + Ao, . : (6.39)

Furthermore, the frequenciesoccurring in the first term o Eq. (6.38)
have to coincide with the frequencies o the external forces. The poten-
tial (6.38) has a number d phase symmetries, since the phases o the
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modes have to fulfill the relations

@+ @,,=2nn

(n, mintegers) (6.40)
Py, + Py, + Py, + Pyo= 2mn

and arearbitrary otherwise. The coefficientsa,,, and b,, ,,,,, in Eq. (6.38)
have to fulfill the symmetry relations
*

Gy = @, (6.41)
bv1 v2vave = b;'kl v2Vvava (642)
b — b¥

V1VaVvivg Vivaviva .

In the following we specidize Eq. (6.38) for different cases and make
contact with the microscopic theory.

a) Self-Lockingd Phases

In this case, no external force acts on the system, apart from the usual
pump. The coupling between the phases o different axial laser modesis,
in this case, due to the nonlinear mode interaction and must be contained
in the 4th order terms o Eq. (6.38).Therefore we obtain

¢S= - Zavlﬂvlz_'- Z bvlvzvg\u tl \fzﬂ\'sﬂv‘i (643)

ViV2V3ivg

Assuming detailed balance we may derive equations o motion by
applying Eq. (4.23). We get

B,=J,—q,0¢%0B¥tF,. (6.44)
J, isobtained from the power series
Jv= _lva ﬂv_l Z va;v;w ﬂtva;ﬂv‘t (645)

VY2V3iv4

where, again, an average over timeslong compared to the optical period
has been taken. The parametersdo, and C. .. haveto bereal in order to
giveJ, the correct time reversal transformation behaviour. Furthermore,
Eqg. (6.45)impliesthe symmetry

Cyvavava = Covzvavs - (6.46)
From Eq. (4.15) we obtain
avavz v3iva = a"4Cv4 vavav. (647)

Egs. (6.42), (6.46), (6.47) are the conditions o detailed balance in the
present case. These symmetry relations are much more restrictive in
the present case than they were in the case o intensity coupling. The



60 R.Graham:

comparison with the microscopic theory [57] shows that the symmetry
relations are approximately fulfilled, if all modes lie sufficiently close to
the center of the homogeneously or inhomogeneously broadened line,
and if exact resonance between these modes exists. A considerablesimpli-
fication of the foregoing analysis is possible in al cases, in which the
amplitudesr, of

B,=r,exp—ig, (6.48)

can be considered as stabilized constants and only the motion of the
phase ¢, has to be considered. In this case, Eq. (6.43) reduces to

¢s = Z Bvl vavive Ccos ((pv1 + (pvz - (p\'3 - (pu — Y, vavs V4) (649)
ViVaV3ve

where

an;v;u = 2|bV1V2V3V4| errVZrV:;rV,‘ (650)

and

exp - inszVsu = bV1VzV3V4/|bV1VzV3V4| . (6-51)

The phases which are realized with maximum probability are obtained
from the extremum principle

§¢°=0, 52¢°>0. (6.52)

An extremum principle of maximum gain has been introduced previously
by intuition, in order to study phase locked lasers [63]. Our extremum
principle (6.52), whenever it is applicable, is equivalent to this principle
of maximum gain. As a specificexample we consider the case o 3inter-
acting modes, which are tuned to satisfy Eq. (6.39)

0=24w,—Adw, — Aw,=0 (6.53)
From Eg. (6.49) we obtain

¢°= A cos(dy — ) (6.54)
where

Ap =20, — @3— @, +6t. (6.55)

The distribution, given by Eq. (6.54) has also been obtained from the
microscopic theory [57, 64]. The equation d motion (4.23)derived from
the potential (6.54) has the form

Ay =56+ 3 Aqsin(dy — yo) + F(1) (6.56)
with
CF@)y=0; (F@F@))=qd(—1). (6.57)
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The Langevin equation (6.56) has been analyzed previously in all detail
[64]. We usethisanalysisto consider the consequences of afinitedetuning
4, which violates Eq. (6.39). The Fokker-Planck equation, corresponding
to Egs. (6.56), (6.57) has the stationary solution

Wi(dy)= Nq exp[264y/q — A cos(dy — )]
Ap+2n (658)
[ -exp[—28¢/q+ Acos(p —wo)]de

4y
where N, isa normalization constant. For 6 =0 this solution is reduced
to Eqg. (6.54). Introducing this solution into Eq. (2.22), we obtain

r(4y)=q[2NoWi(dy)] ™! (1- exp(—4n 6/q)). (6.59)

Eqg. (6.59) shows, that 60 will induce a nonvanishing drift velocity
in the stationary state. Hence, 6 =0 is the condition for detailed balance
in the present case.

b) Forced Locking of Phases

Mode locking can be forced by an external modulation o the losses or
the gain. If the modulation frequency coincides with the difference in
frequency dof neighbouring axial modes, the gain of the generated satellite
modes will depend on the phases of these neighbouring modes. Hence
a phase coupling of modeswithinitially uncorrelated phasesis produced.
In this case, the most important phase coupling is already contained in
the bilinear terms of Eqg. (6.38). The phase coupling in the higher order
terms is then of minor importance and is left aside here. ¢* has the form

=y [— a, B2 —alD(BE, | B+ BEBy s 1) + vzbvvf|ﬁv|2 ﬁm} (6.60)

v

where al" is real and is proportional to the externa locking force. In
order to see how a'V leads to a locking of phases in the presence of
many maodes, we consider theindex v asa continuousvariable and obtain

¢* = [dv[—a()IBO)* + a V(W) 0B dv)2 + [dV b, v)IB(K) BO)]
(6.61)
where we defined

(D) — g1

a’(=a"¢, 1 6.62)
aW)=(a,—a\’ —a’ ) e,

and g,dv is the number of modes in the interval (v,v+ dv). Eq. (6.61)

shows that, for a'V’(v) >0, ¢* becomes smaller if |6(v)/dv| is decreased.
Hence, the term containing a'" tends to make the amplitude B(v) uni-
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form with respect to the index v. Since the electric field is given by the
fourier transform with respect to v, we obtain a pulse sharpening in the
time domain. The number of modes Whose phases are locked by a'"(v)
can be estimated as follows. Assuming constant amplitudes r, of
B(v) =r(v) exp — ip(v), the probability density W7 is given by

Wi ~ expl - [dv aP(v) r3(v)(8e(v)/év)*]. (6.63)

This probability density functional o the stochastic phase ¢(v) describes
a Brownian motion o the phase along a coordinate v. The quantity

Av=aV)riyv) (6.64)

defines a coherence interval, since for |v, — v,| < Av the phases of two
given modes v,,v, are coherent, whereas for (v,—v,|> Av they are
completely at random. The sized the coherence interval is proportional
to the modulation strength and to the mode intensity. The equations
of motion derived from (6.60)by applying (4.23)are

Bv=qv (avﬂv+a(vl—)l ﬂv—l +a(v1) ti+1 _zzbvn'ﬂvllzﬂv) +Fv (665)

where we assumed a constant and diagonal diffusion matrix, and, for
simplicity, disregarded frequency shifts. The latter could be taken into
account if necessary. Eq. (6.65) can be compared with equations o a
microscopictheory given in [65]. Agreement is obtained if we put

ga,=—-ktg,; qaV=x.; 24b,.,=99, (6.66)

k is the loss which, in [65], is assumed to be equal for al modes; g, is
the gain o mode v; «, is the amplitude o the loss modulation. This
specia choice o coefficients ** alows us to put Eg. (6.65) for f,=0
into the form of alinear eigenvalueequation

K BY ~xo(BYy ; + By 1) = g,Go(M) BY (6.67)

for the eigenfunction BM and the real eigenvalues G,(M). B, is given as
alinear superposition

B.=3 CyBY. (6.68)

The apparent nonlinearity o Eq. (6.65)is hidden in the linear Eq. (6.67),
because, in addition, G,(M) hasto satisfy
Go(M)=1-2Y g, |BY[*. (6.69)

t3 Thefollowing resultswere obtained previously by H. Geffers, University of Stuttgart,
in unpublished calculations based on a Fokker-Planck equation.
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The eigenfunctions BM satisfy an orthogonality relation with the weight
function g,
ngBvaBfMl =%(1 — Go(M)) dpgps- - (6.70)

The eigenvaues G,(M) are red. Expressing ¢° in terms of the new
variables C,, we obtain

=~ ;%ICM'Z(I = Go(M))* + (Z%(l — Go(M)) iCMIZ)Z- (6.71)

M

This gives us the distribution of the coefficients C,, in the stationary
state. The most probable configuration is given by

0¢°/0Cy =0 6.72)
which has the solution
|Cml* = dremo . (6.73)

Therefore, most likely the configuration B is excited in the stationary
state. In order to determine the most probable value d M,, weintroduce

Cr=0mm, +0Cy (6.74)
into Eq. (6.71), obtaining
¢*= —4(1= Go(M)* + 3 ¥ (1 - Go(M)) (Go(M) — Go(Mo)) IBCil* . (6.75)

From Eq. (6.70) we know that 1— Gy(M)=0. Hence the last term in
Eqg. (6.75)is positiveand the solution (6.73)is stable only if M, minimizes
G,(M). This configuration gives the absolute minimum o ¢*. From our
genera theory we know that this absolute minimum is stable, whereas
all other configurations are unstable. The phase o C,,, is not determined
by thisargument, and a diffusion o the phase d C,,, will take place due
to fluctuations. Eq. (6.75) gives an expression for the probability density
o the excitation of other configurations B¥(M + M,) in the stationary
state. The configurations with smallest and with largest ) g,|B¥|* are

excited most likely. In view o Eq. (6.68)only the latter givean important
contribution to the total field.

c) Frequency Locking

Frequency locking indicates the oscillation of different modeswith equal
frequency. These modes would have dightly different frequenciesin the
noninteracting case. In typical cases the nearly degenerate modes arise
from Zeemann splitting in a week magneticfied [61] or from the excita-
tion o closaly spaced nonaxial modes [62]. As a result of frequency
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locking, the mode structure d the filled resonator differsfrom the mode
structure of the unfilled resonator. By application o our theory it is
possible, to give an expression for the probability density of finding a
certain amplitude of a mode of the unfilled resonator. Asin the case of
phase locking discussedin 6.3a, b, we may distinguish two cases: locking
due to nonlinear, and to linear mode coupling. The analysis o both
cases completely parallels the analysis given in 6.3a for the nonlinear
lockingand in 6.3b for theforcedlinear locking. However,in thefrequency
locking case we no longer distinguish different locked modes by their
differentfrequencies. We rather haveto use different mode characteristics
like the polarization (in the case o the Zeemann splitted laser) or the
spatial mode structure (in the case d nonaxial modes).Sincethe analysis
is similar to the considerations o Section 6.3a, b, we discuss here only
the smple example o the linearly induced frequency locking o two
modes, which has been discussed in the literature in the frame o the
microscopic theory [66]. We obtain from Eg. (6.38), by neglecting non-
linear phase coupling,

= - Y a,lB) —a BB, —aV* By B3+ 3 by B 18,1 (6.76)

which gives the probability density, W} ~ exp(— ¢°), o findinga certain
amplitude of the modes d the empty resonator. Eqg. (6.76) reproducesan
end result of the microscopic theory [66] which, in the present case,
turns out to be very involved. For wel stabilized amplitudes r, d
B,=r,exp-ie,, EQ. (6.76) reducestd

Wi~ exp(—2|aV| rir, cos(dy — ) 6.77)
with
Ap=9,— @, (6.78)
and
expiyo =a/|aV). (6.79)

Some further implications d Eq. (6.76) and the possibilitiesdf putting
this result to experimental test have been discussed in [66].

6.4. Light Propagation in an Infinite Laser Medium

Thedtatistical analysis d the complete space-time behaviour o laser
fields became important after the discovery o ultrashort light pulses.
Thedescription d these pulsesin the mode pictureis no longer economi-
cal, since too many modes participate in the nonlinear interaction. The
general analysis o the statistics o ultrashort light pulsesis one of the

E
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most important unsolved problems in quantum optics. This problem
can not immediately be attacked with the methods described here, since
it involves many rapidly varying variables, invalidating the Markoff
assumption. However, if the fluctuation problem can be reformulated
in terms o a small number o dowly varying space-time dependent
fields, one may apply our theory. Two examples are given below. First
we generalize the considerations o section 6.1 from single mode opera-
tion to the propagation d a space-time dependent field in a one-dimen-
sional laser medium of infinite length. This generalization is significant,
since it shows how close the analogy between the laser threshold and
systems near a critical point of phase transitions really is. A microscopic
theory o this example wasgivenin [45].

In the vicinity o the laser threshold we describe the system by the
dowly varying complex amplitude f(x, t), which now also depends on
the space variable x. We determine ¢* by an expansion in powers of
this amplitude, observing the general rules given in 3.2. We now have
totakeintoaccount thespacevariation o theamplitudeaswel. Assuming
slow spatial variation, we retain only the lowest order term in dg/dx
and obtain

¢* = [dx[—alB()I* + bIB()I* + d12B(x)/0x|*] (6.80)
where

b>0, d>0, (6.81)
a=a(d-A) . (6.82)

Expression (6.80)is the well known basis o the Landau theory of phase
transitions with a space dependent order parameter [67]. The relative
magnitude o « and d can be determined if we put A= 0 and neglect
the fourth order term in Eq. (6.80). Then we can calculate the average
{B*(x) B(0)) from the distribution W7 ~ exp(— 43 by functional integra-
tion. We abtain

{B*(x) BO)> = <IBI*) exp — IxI/&, . (6.83)
The coherence length
Eo=1/dfod, (6:84)

is the length o the wave packets of spontaneous emission. If the laser
atoms have a natural atomic line width y, and if the additional damping
in the medium is k, we have

Co=clc+y)~! (6.85)
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where c is the velocity o light, and
d=c*al(k+7,)"? (6.86)

&, islarger than 1cm in optical systems, and hence much longer than
the corresponding coherence lengths in superconductors or superfluids.
Thislarge coherence length accounts for the fact that spatial fluctuations
ared littleimportance in lasers d typical dimensions. At the same time
it reveals one of the reasons for the accuracy o the Landau theory in
optical examples. As is wel known, the Landau theory becomes exact
if the coherence length &, becomes very large. The potential (6.80)
makes it possible to calculate single time expectation vaues o the
field. T o this end we define the quantity

Q(B, B* |8, B*; x—x) =(8*(B(x) — B) 8*(B(x) — B> (6.87)
with
8%(B(x) — B) = 5(Re B(x) — Re p) 6(Im (x) — Im f). (6.89)

The average on the right hand side o Eqg. (6.87) defines a functional
integral o the Wiener type. Instead o doing thisintegral one can evaluate
the" Schrodinger equation™

8Q/ox=d~' *Q/oBop+(— alfl* T b|pH Q (6.89)

which is equivalent to Eq. (6.87)[22, 68]. The time independent form of
Eqg. (6.89) describes energy eigenstates d a quantum particle with mass
2d in the potential, shownin Figs. 4,5. Eq. (6.89) can be solved by approxi-
mation procedures or numerical methods familiar from quantum theory.
Once Q is determined from Eqg. (6.89), one can calculate averagesd the
form

A5(x, x) = (Fy(B(x), B*(x) Fa(B(x), B*(x))> (6.90)
by the relation

Apa(x, x)=[d*Bd>B Fi(B, B*) Fa(B, B*) Q(B, B*| B, B*; x—x)  (691)

Wedon't evaluate the resultsin this generality here. The most important
effect which determines the coherence length of the amplitude B(x, t),
is the spatial diffusion o the phase o the light, which can be evaluated
without solving Eq. (6.89). The same phase diffusionis wdl known in
the theory o 1-dimensional superconductors (cf.e.g. [69]). If we decom-
pose

B(x)=rexp—ip(x) (6.92)
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and assume that r is a space independent constant (which is valid well
above threshold), then Eq. (6.80) reducesto

¢*=d-r*[dx(0¢/0x)* . (6.93)
From Eq. (6.93) we obtain for the average

dp(x) = @(x))*> =Ix — xI/¢ (6.99)
with the new coherence length

E=2drl=a(A—A) d/b. (6.95)

Eq. (6.94) clearly shows that the phase undergoes a spatial diffusion. If
the spaceintegral in Eq. (6.93) would be taken over a three dimensional
volume, the phase diffusion would vanish and would be replaced by a
zero frequency oscillation around a constant value (Goldstone mode).

In the second example of this'section we look at the propagation o
periodic pulse trains in an infinite laser medium. The spontaneous
occurrence o trains o periodic pulses in a medium with translational
invariance is again connected with a symmetry changing instability. In
fact, this instability, considered in the mode picture, has aready been
considered in Section 6.3a. Here, we are interested in the state, in which
many laser modes are firmly locked to form a periodic train o very
short and intense pulses. This state has recently been analyzed in a
theory which neglects fluctuations, and stationary periodic pulse trains
have been found [70]. We apply our phenomenological theory in order
to see how this result is modified, if fluctuations (due to spontaneous
emission) are taken into account. We assume, that the intensity o the
field can be approximated by the non-fluctuating periodic functions,
found in [70], and that phase fluctuations d the field have the most
important effect. A fluctuation in the phase o a propagating field is
equivaent to a fluctuation in its propagation velocity. If the frame o
reference moves with the average propagation velocity o the field, the
space dependent phase fluctuations lead to a fluctuating space-time
dependent displacement o the field intensity relativeto the nonfluctua-
ting state. We may describe this displacement by a ' displacement vector"
u(x, 1) in terms o which the fluctuating field f(x, t) is given by

B(x, ) = Bo(x +u(x, 1)) . (6.96)

Bo(x) is the stationary, periodic field when fluctuations are neglected,
as given in [70]. The stationary distribution of u(x) can now be found
from symmetry arguments. ¢* may only depend on spatial derivativesof
u(x), since a uniform displacement cannot alter the probability density.



68 R. Graharn:

Hence, to the lowest order, ¢° is given by

#* = [A(x) (Ou/0x)* dx (6.97)
with
A(9)=A(x+R) (6.98)

A(x) must have the periodicity o the nonfluctuating pulse train. This
treatment of phase fluctuations in periodic pulse trains is completely
equivalent to the problem o displacement fluctuations in one-dimen-
sional crystals, discussed by Landau [71]. Asiswdl known in the case of
one-dimensional crystals, the excitation o phononsleadsto the destruc-
tion o strict periodicity. The same result holds for phase fluctuationsin
1-dimensional pulse trains. The destruction d long range order in the
pulse train can be realized by calculating the mean sgquare displacement
between two points with [x — x| > R. We obtain

{(u(x) —ulx))*y =|x — x'|/& (6.99)
with
R
5—=(2/R) j Ax)dx (6.100)
0

The result (6.99) grows linearly with the distance, indicating a diffusion
process which destroys periodicity over distances larger than £. Since
the processunder consideration isagain a phase diffusion, the coherence
length ¢ in Eq. (6.99) can be estimated by Eq. (6.95), where r* has to
be replaced by a spatial average d the field intensity. Since in the case
of pulse trains the fidd intensity becomes very small between the pulses,
the coherence length can become much smaller than in the case of
single mode operation. If the coherence length ¢ becomes comparable
with the pulse period R, abreaking up of the pulsetraininto a stochastic
sequenced fluctuation pulses must take place. This break up corresponds
to a transition from the phase locking Region 6.3 to the random phase
Region 6.2.

7. Parametric Oscillation

Besides the instabilities encountered in laser active media, there exists
another class of instabilities in nonlinear optics. These instabilitiesare
included in passive optical media by shining in a coherent laser field.
Therefore, these are also instabilitiesin stationary nonequilibrium states
far from thermal equilibrium. In this section we consider the simplest
examplesby applying the general theory o part A. In section 8 we con-
sider also more complicated examples.
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7.1. Thejoint Stationary Digribution for Signal and Idler

We consider the nonlinear optical processin which alight quantum with
frequency w, and wave vector k, is transformedwjnto two quanta with
the frequencies w,, w, and the wavenumbers k,, k, **. It is assumed
that none d the three frequenciesis in resonance with excitations o
the medium. The basic scattering process is shown in Fig. 15. In the

' w ky
wp'kp A~ AnS
AN

Fig. 15. Second order parametric scattering of light and the corresponding electronic
transitions in a two-level atom

_.f’."_!}.H._.ﬂ ........... 3
m c f

Fig. 16. Scheme of an oscillator, based on induced light scattering in @ medium with a
field dependent dielectric susceptibility. (! laser, m mirrors which are transparent at the
laser frequency w,, but highly reflecting at the oscillator frequencies, ¢ crystal with field
dependent susceptibility y™, f-filter absorbing the laser light, p photo-detector)

same figure we show the virtual transitionsin a two-level system which
would giverise to this scattering. A typical experimental set up is shown
in Fig. 16; it was first realized by Giordmaine and Miller [81].
We assume perfect frequency matching

0+, =0, (7.1)
and phase matching

ki +k,=k, (7.2)
Mirrors which reflect light at the frequencies w, and w,, but do not
reflect light at the frequency @, are employed to reduce the losses at

14 A genera introduction to parametric processes of this kind is given in [72]. See
also[9, 11, 37.44, 73 - 80].
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w,, W, considerably below the losses at w,. Then the complex ampli-
tudes B, B, of the modes with the frequenciesw,, w, are the only dowly
varying variables of the system. The external parameters {A) are repre-
sented by the complex amplitude F, of the pumping laser.

The potential ¢° is again determined by a power series expansion
with respect to the amplitudes B,, ,. Keeping only resonant terms, we
obtain in lowest order

¢s=al|ﬂ1lz+az|ﬂz|2+a12FpﬂTﬂ§+aT2F:ﬂ1ﬂ2 (7.3)
where a,,a, are real and positive constants and a,, is a complex con-

stant. Theterms = F,, F} aretime independent, because df the resonance

condition (7.1).The constant a,, must be proportional to the nonlinear
susceptibility giving rise to the scattering processd Fig. 15.

In order to deriveequations of motion from Eg. (7.3)we assumethat
the diffusion matrix is constant and diagonal (cf. Section 6.1) and use
Eq. (2.24).Theresult is

B1= —q, 0¢°/0BT +ri + Fi(t)
B2= —q200°%/0B3 + 13+ F,(1)

where g, and ¢, are the diagona elementsd the diffusion matrix. The
fluctuating forces F, , have the properties

CFi)=<F»=0;  <(F () F(t) =<F () FF()) =0
CFHO) Fi(t+7)) =24, 6(7) , (7.5)
CFR() Byt + 1)) =29, 6(1). '
The drift velocity in the stationary state may be given as a power series
expansion in the mode amplitudes. In addition it hasto satisfy Eq. (2.20).
Up to the accuracy of ¢* we obtain
ri=—io, B, —id,(a,,/a,) F, B3
ry=—io, B, —~i 52(012/02) F, Bt
where the coefficientsa, , a,, d,, 8, are real and fulfill the relation
ayto,=8,+0,. (7.7)

Clearly, a,, a,, é,, 8, describe detuning effects, which cannot be present
in our case, since we assumed exact resonance in Eq. (7.1). Therefore,

we may put
a=a,=86,=65,=0 (7.8)

(7.4)

(7.6)

in the following. In the stationary state the amplitudes fluctuate around
the state

Bi=B,=0. (7.9)

I
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The state (7.9) becomes unstable, if the bilinear formin g, 8., Eq. (7.3),
is no longer positive definite. This happens if the secular equation

Ar=(ay,q; +ayq) A+a,a,q,q2— |a12Fp|2 q:19.=0 (7.10)
has a negative root

A1, =3a1q: + 202 £ V(0141 — 0202 HaroFl* 444, (7.11)
ie. if

|Fp|2>a1‘12/|‘112|2 (7.12)

In order to determine ¢* in the vicinity o thisinstability, we diagonalize
Eq. (7.3)by the transformation

_ (q1ay—42) B1 +q,0128%
' l/‘ﬁal(alql"'az‘b)

(7.13)

_ (g2a,—22) By —q1a128%
g V‘h‘haz(al‘h +a,q,)
and obtain
¢F =y o1> + A, 1v,)? (7.14)
In(7.13), (7.14)we used the approximations

a,a, —|F,a.,)%)

A =ayqs+ayds, A= q:42(a,a; — |Fa,, (7.15)

a;q,+axq;

valid in the threshold region. Eq. (7.15)showsthat 4, < A, in the thresh-
old region. The instability occurs only with respect to the mode v,,
whereas v, is heavily damped at the threshold. The form o ¢* in the
vicinity o v, =v,=0, for |F,|* dightly above the threshold (7.12), is
shown in Fig. 17. In order to describe the threshold region completely,
we have to add higher order terms to the potential ¢°. Since only v,
becomes unstable, we need only add higher order terms with respect
tov,. We obtain

¢ = Ay [vs |2 + A, 0512 + bloyl* (7.16)

with real, positive b. Eq. (7.16) gives the joint stationary distribution
for both parametrically excited modes (signa and idler) in the threshold
region. This result has not yet been obtained by the microscopic theory
o stationary parametric oscillation [75— 80]. However, some results o
the microscopic theory are contained in Eq. (7.16)as specia cases and
we now consider them.

i) Thedistribution for the"signal" amplitude [78]. Thisdistribution
is obtained from Eq. (7.16)by integrating over §,, or, even more simply,
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by using the fact that v, is heavily damped compared to », and can be
put equal to zero. Thisyields

Ar—qia,
=—p1, ~ 7.17
& q18,2 Py ( )

4,0, +q,a, — 24,

e ’ 7.18)
27 V4192020009, +ax95) (
e bla,q, +ayq )2
= (a1q;+a 2, Mg +a:qh) g 1
¢ 41429, 1491 292) 1B, (‘114202)2 1B, ( )
d)s ,/|V||
 ———
e ~
"} ; —\
iz - 2
}|V||
- " eee———— — e
~lvel “\>§~T—:—f""‘“/"‘/ "
T ’—”‘——_\‘%~\\ 2|

~ly) *
Fig. 17. The potential (7.14)slightly above threshold, in thevicinity of v, = v, =0. The poten-
rial has a sharp minimum with respect to v, |

The potentia (7.19) has the same form as the potential for a single mode
laser. This had to be expected in view d the fact that the same basic
principlesgovern both instabilities. The result (7.19) has also been found
in the microscopic theory [78].

i) The joint distribution o signal and idler, in the case of equal
damping, has been obtained recently. from the microscopic theory (cf.
[80] and Section 8). This specia case is obtained from Eg. (7.16) by
putting

Gi=ay=a; q,=4,=4 (7.20)
which yields

A,2=aq+ lay, F,lq (7.21)
U1,2=(2Q)_1/2 B i'a12Fp B§/|012Fp|) (7.22)
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The result o the microscopic theory [80] readsin our present notation

&° = Ay o1 |2 + Ao 07 + b(lvy|* + val* — viv3? — vF?03) . (7.23)
The two results (7.16) and (7.23) are the same if
41> 2b|v,? (7.24)

holds. |v,|*> can be estimated by taking the maximum of the potential
(7.16).Then thecondition (7.24) is reducedto |4,| < 4, which, by Eq.(7.21),
definesa region around threshold

la—la,,F,ll/2a<1 (7.25)

where the phenomenological theory applies.

7.2. Subharmonic Oscillation

Subharmonic oscillation occurs if signa and idler degenerate to one
singlemode [72, 82], i.e., we have

W, =a)2=a)p/2
ky=k,=k,/2.

This case is contained in the theory o the last section. Since it has some
peculiar features of its own, we discuss it separately. In the case of
nondegenerate parametric oscillation the phases o f, and f, are not
determined in the stationary state. Only the sum o their phasesislocked
to the phase of the pump amplitude F.

The sum o the phases of signa and idler degeneratesto the double
of the subharmonic phase which is then locked to the phase of the pump
fied. Therefore, the double phase o the subharmonic is fixed up to
multiples of 2zr. The phase itsdf is then fixed up to multiples of . Sub-
harmonic generation presents, therefore, an example of a symmetry
changing instability, where the symmetry, which is changed, is discrete,
rather than continuous, as in our other examples. The minima of ¢*
in the ordered state will be discontinuously degenerate. Specidizing
Eqg. (7.16)for the present case wefind

¢ =alpl>+a,, F,B** + at, F¥B* + b||* . (7.27)

The contour lines d the potential (7.27) in the complex B-plane are
shown in Fig. 18. In order to obtain the probability density for the
absolute value d the amplitude |8! aone, we integrate the distribution
W, ~ exp(— ¢*) over the phase of the subharmonic to obtain

Wi(1B) ~ |8l Io(2la, . F,B) exp(—alBi* ~ b|B*) . (7.28)

(7.26)
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The normalization has to be carried out by integrating over || from 0
to . I, is the Bessdl function with imaginary argument and index 0.
If we expand the Bessd function in a power series, keeping only the
lowest order, we obtain

Wi (B)) ~ exp(—(a —2la,, F,)) IBI* — b |1B*).- (7.29)
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Fig. 18. The potential ¢° for subharmonic oscillation, Eq. (7.28) below (a) and above (b)
threshold

This result has, again, the same form as the result for the single mode
laser. In this case, however, the form (7.29) is not due to a phase angle
invariance of the system, which isintrinsic to the system, but rather to
complete lack o knowledge of the phase because of integrating over
this.variable.

8. Simultaneous Application of the Microscopic and the Phenomen-
ological Theory

In the previous sections we gave examples for the application d the
‘general phenomenological theory, set forth in the first part o this paper.
The microscopic theory was only used to compare the results, wherever
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it was possible. In thislast chapter we will treat nonlinear optical pheno-
menaby combining the microscopicand the phenomenol ogical approach.
The microscopictheory, whose concepts were given in Section 5.2, is used
to derive a Fokker-Planck equation for the quasi-probability density of
the interesting mode amplitudes. We make use d the phenomenol ogical
theory, when we chosea system which hasthe property o detailed balance
with respect to the mode amplitudes. This choice allows us to employ
the potential conditions of Section 4.2 to write down the stationary
quasi-probability density for the considered process. In section 8.1 we
introduce the general scattering processfor photons in a medium with
nonlinear susceptibility. The process is very general since it involves
an arbitrary number d quantain an arbitrary number d modes. It is
special because o the restriction to detailed balance, which amounts
here to the assumption o equal loss rates for al modes. In Section 8.2
the Fokker-Planck equation for the process is set up along the lines
given in Section 5.2. This equation is solved in 8.3 by using the methods
of Section 4.3. In 84 we discuss some special examples contained in
the general solution. Some o these cases were aready considered in
Section 7 from a purely phenomenological viewpoint. As a hew result
we obtain the stationary distributionsof higher order parametric proces-
ses. Furthermore, multi-mode effects, both in the pump and in the sti-
mulated processes are taken into account.

81 A Class of Scattering Processesin Nonlinear Optics and Detailed
Balance

We consider optical scattering processes o the following kind. Let some
medium with a field dependent optical susceptibility be given, in which
certain optical modescan propagate. One modeis supposed to bedirectly
excited by an external laser field. The quanta which are present in this
directly excited mode may be scattered into other modes. The inter-
action which causes this scattering is mediated by the electrons o the
medium, i.e., by the field dependent part o its susceptibility. We re-
present this process graphically in Fig. 19. A single photon o a fidd
mode (with frequency w, and wavenumber k) which is directly coupled
to the pump light, decays into n photons with various frequencies and
wavenumbers. The conservation o energy and momentum implies the
matching conditions

Y no,=,, (8.1)

Y nk,=ky, (8.2)
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where we have allowed for the creation of n, quanta in mode v. If we
assume that there is no resonance between electronic transitions in
the medium and thefrequencies of the modes, theinteraction between the
modes may bedescribed by an effectiveHamiltonian {cf. e.g.[9,44, 77, 79]).
Attaching a boson annihilation operator b, to each incoming line in
Fig. 19 and a boson creating operator b, to each outgoing line, we get
the following effectiveinteraction Hamiltonian

Hyg=(@hF,b} tihyb,@") * (hc) (8.3)
with
Q=[] Gr. (8.4)
v=1
l
FW\W wl'kl

wp, kp b wp k2
|,VsMNv> wn'kn

Fig. 19. General scattering processin nonlinear optics

The first term in Eq. (8.3) describes the direct excitation of the mode
with frequency w, by the external forcé F,, which is proportional to the
amplitude of the pumping laser. The second term describes the scattering
process shown in Fig. 19, where we have again alowed for the simul-
taneous creation of several (n,) quanta in mode v. The hermitian con-
jugate describes the time reversed processes. We may generalize the
Hamiltonian (8.3) still further by allowing for the presence of severa
different competing scattering mechanisms o the type shown in Fig. 19.
We simply have to put, instead of Eq. (8.4),

Q' =Q*by.b3,...,b}) (8.5
where Q* is some arbitrary (analytic) function, defined for c-numbers.
The resonance condition (8.1) has to be generalized to the condition
Q*(b{ expiw,t,bs expiw,t,.... b} expiw,t)

= expiw,t - Q*(by, b3, .... b)). (8.6)

We assume that this scattering process occurs between the two mirrors
of some optical cavity. The mirror losses of all modes have to be taken
into account by additional termsin the Hamiltonian, which describe the
coupling o the mode amplitudes to some heat baths. Eliminating the
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heat bath variables by wel known procedures, we derive an equation
of motion for the density operator ¢(b,, b7, b,,b3,... b,,b,, b, b)) (see,
e.g.,[82, 77]). ¢ may beconsidered to depend on the basic boson operators
describing the field modes.

¢=—ih™ [Hig, 0]+ X {x,0,+ 1) ((bye, b7 ]+ [by, b))
+x,1,([b7 ¢, b1 +[b],0b,])

+ 1,0, + 1) ((b,0, b 1 + [b,, 05 )
+x,(,+ 1) ([by 0, b,] +[b,,eb,D)} .

(8.7)

Here the constant , is the decay rate of the amplitude of mode v due
to the escape o photons through the mirrors of the cavity. n, is the
mean quantum number in mode v due to the presence of the heat baths
aone. For thermal heat baths and optical frequencies this number is
much smaller than 1 and therefore neglected. The notation k, and 7, is
evident; n, is also negligible. Eq. (8.7) gives the complete microscopic
formulation of our problem. Due to the presence of the driving force
F, and the loss rates «,, x,, in (8.7), we have a steady energy flow from
the pumping laser through the directly excited mode into the other
modes. The distribution o the energy over the different modes and their
degree of excitation is determined by their loss rates and their participa-
tion in the scattering process. Due to the presence of mirrors and feed-
back, multiple scattering processesand depletion o the initialy excited
mode are important. At first sight, this problem seemsto be very compli-
cated. On the other hand, it is clear from the discussion in section 4
that it ispossible to find the stationary distribution for systemsin detailed
balance, even for very complicated cases. Hence, we reduce our genera
problem toaspecia one, in which we may expect the presenced detailed
balance. This could be done by deriving a Fokker-Planck equation from
Eq. (8.7) and looking for cases in which the potential conditions of 4.2
arefulfilled.

Physically more instructive, although mathematically less rigorous,
is the method o directly analyzing the possibility of irreversible cir-
cular probability currentsin the system. The parameters of the system
can then be chosen in such a way asto makecircular probability currents
impossible. Here we apply the latter procedure. In the present case,
circular probability currents may occur in two different ways: first, by a
separate circular diffusion of the amplitude of each mode; second, by a
coupled circular motion of several mode amplitudes. It can be shown by
the arguments of Section 6.1 that the probability currents due to un-
coupled amplitude motions always have to be reversible and cannot
destroy detailed balance. Thus, theonly possibility for circular probability
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currents is the occurrence o circular motions involving several ampli-
tudes. Fig. 20 shows the way in which the variables o the total system
(including the pumping laser and the heat baths) are coupled by the
Hamiltonian. This scheme indicates which variables can participate in
acoupled cyclicdiffusion. Since the total systemisnot in thermal equilib-
rium, some cyclic probability currents have to occur.

heat reservoir
|

1

I — !
heat reservoirs

| 1
Fig. 20. Thecoupling of the various degrees of freedom in the total system

pumping | —®| directly excited ——
laser, F, amplitudeb,,,b,';

ah

modesb,, b
excited by scattering | —ee—

We consider first the directly excited mode, described by b,. This
degree of freedom participates in a cyclic current, because it is excited
by the laser fidld without having the possibility of acting back on the
laser. However, if we make the assumption, that this degree o freedom
relaxes rapidly to a conditional equmbrlum with respect to the ampli-
tudes o the other modes, i.e., {

K> K, (8.8)

we can eliminate this variable without destroying the Markoff property
of the remaining modeamplitudes. Then it issufficientthat theirreversible
cyclic probability currents among the remaining degrees o freedom
vanish, in order to have- detailed balance. Fig. 21 incidates how the
parametrically excited modes are coupled. They are indirectly coupled
by the directly excited mode and they are also coupled by the heat
baths.

In principle, we may have a circular probability current in which
two or more modes participate in the following way: The amplitude
of mode u is changed by a fluctuation absorbed by its heat bath, which
is a the same temperature as the heat bath of modev. The heat bath of
mode v transfers the fluctuation into modev, which reacts back on the
amplitude b,. From there, the fluctuation is given to mode u again,
thereby closing the cycle.

From Fig. 21 it becomes clear, that circular probability currents
of this type are zero, if the net rate with which the quanta o different
modesare absorbed by the heat baths are equal for all modes. Therefore,
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detailed balance holds if
=1 (8.9)

If we assume Eq. (8.9)we can find the stationary solution by the methods
of 4.3. But first, we have to derive a Fokker-Planck equation from Eq.

(8.7).

directly excited
amplitudeb,, by

b19b1+ bz b2 senmesscen bv,b: eseomunn b",b:

g e
e I,

Fig. 21. The coupling of the parametrically excited modes by the heat reservoirs and the
directly excited mode

8.2. Fokker-Planck Equations for the P-Representation and the Wigner
Digtribution

We transform the operator equation (8.7) into an equivalent c-number
eguation by using a quasi-probability representation (cf.[8, 84]) o the
statistical operator . We obtain the P-representation [85] o o,

e({b, 6™} =(m~"[1§d*B,I{B}> PUB, B*}) <{B}I, (8.10)

™
by putting ¢ into anti-normal order with respect to the boson operators
of the modes and considering it asa function o {8, f*} instead of {b, b*}
[86]. In Eq. (8.10), |{}) is a coherent state [84], defined by

b, I{B}> =B, I{B} - (8.11)

The equation o motion for P is obtained [86] by putting the operator
equation of motion for g, (8.7), into anti-normal order and substituting

b,—B,, bS-pF. (8.12)
The ordering can be carried out with the help d the relations

eb,=(b,—(9/0b))) e, (8.13)
eby =(by +(0/0b)e. (8.14)
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We obtain

P= [K Z 0/0B, B,P +v (B,Q*({B*—0/0B}) — (B, — 0/0B}) Q*({B*) P
—F§ 8/} P+x,0/3B% B P| + [ec]. (8.15)

Eq. (8.15) can be approximated by a Fokker-Planck equation by ex-
panding the differential operator Q*({#* — 6/68}) in powersd /2 and
retaining only terms up to second order. One obtains essentialy an
expansion around the classical limit o the considered quantum process
(cf.5.2). By introducing the dimensi onlessvariables/?v =B/} <IB,1*> one
can show, that subsequent powers differ in order of magnitude by

UKIBA®Y -
In this diffusion approximation Eq. (8.15) reducesto

P= [}: 0/3B¥(xB¥ — v By 0QUBY/OB)P + 0/0 B3 (xc, By — Fy + ¥Q*({B*)P

+3v Y B, P Q*(B*))/0B% OB} 02P/0B, 0B, | + [cc]. (8.16)

vy .

Oncethesolution o Eq. (8.16)isknown, al normally ordered expectation
valuesd the boson operators may be cal culated by substituting according
to Eq. (8.12)and using the distribution likea classical probability density
[85]. A disadvantage d the use o the P-representation is that P need
not aways exist. In particular it is known that P does not dways exist
for parametric processes involving several modes [75, 773. For this
reason we prefer to transform Eq. (8.15) into an equation for the Wigner

distribution, whichisknown alwaystoexist [87, 84]. TheWigner distribu-
tionisgivenin terms of P by

W({(B, B*}) = (/)" T] [ (exp — 2|, — B,1%) P({ar, a*}). (8.17)
[

From Eq. (8.15) we obtain

W= [K Z 0/0B¥(BY +30/0B,) W +y(B,+ 30/3B5) Q*({B* — 39/0B) W

= v(B, — 30/0B%) Q*(f* T 1d/0B)) W — Fr aw/op} (8.18)
t i, 0/0B5 (5t $8/0p) W [ec].

As before, we introduce the diffusion approximation and obtain
W= [Y.0/0B2 <t — 183 0Q(BY/0B) W + L 3w 0 WP, 0Bt

+0/0B% (<, B% — Fr T yQ*({B*}) W + 41, & W/aﬁ,,éﬂ;:l
+ [cc].

(8.19)
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It is interesting to compare Egs. (8.19) and (8.16). They differ in the
second order derivative terms which describe the fluctuations, i.e. the
spontaneous emission processes. The two different descriptions corre-
spond to two different, but equivalent, interpretations of spontaneous
emission in nonlinear optics. Spontaneous emission can be considered
as being induced by the vacuum fluctuations of the modes, which are
in turn driven by the vacuum fluctuations o the reservoirs(~ k). Spon-
taneous emission may also be viewed as arisingfrom the interaction (~y).

If W has been determined from Eq. (8.19), one may calculate all
normally ordered expectation values by substituting

by By +10/0B,;  boB,+1/0BY (8.20)

and using W as if it were a classical probability density. Antinormally
ordered expectation values can beevaluated by substituting

by >Br—130/0B,; b,—>B,—50/0p% (8.21)
and proceeding as before (cf. [88]).

8.3. Stationary Distributionfor the General Process

Neither Eg. (8.16) nor Eg. (8.19) fulfill the potential conditions of Sec-
tion 4.2. The reason for this was discussed in 8.1 and was found to be
given by certain cyclic probability currents occurring in the stationary
state. Adopting now the two conditions (8.8) and (8.9), we can suppress
these currents, and hence establish detailed balance. Condition (8.8) is
used to determine the equilibrium value o the amplitude g, d the
directly excited mode, for given values o the pump F, and the instan-
taneous amplitudes of the remaining modes. Putting the drift term of g,
in Eq. (8.19) equal to zero we obtain

B,=Fy/x,—yQ/x,. (8.22)

We eliminate g, from Eq. (8.19) by inserting Eq. (8.22) and integrating
over §,, fy. In addition, we use the condition of equal damping, Eq. (8.9).
This gives us the reduced equation

W= Zv: {0/0BY[xBY — (YFy/x,) 0Q/0B, +(v*/x,) 21Q1*/aB,] W
+0/0B,[x B, — (yF,/x,) 0Q/0BF +(y*/x,) 0|Q*/0p*1 W (8.23)
+x *W/3B,0 B .

Eqg. (8.23) fulfills the potential conditions as it should according to the
analysis d Section 8.1. It is now easy to give the stationary solution
o Eqg. (8.23) by making use of the connection between the drift term
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and the stationary distribution, which is provided by the potential
condition (4.13).We obtain

W3 ~ exp(— ¢°) (8.24)
with
& =22 1B, — Qy/r i) (FFQ+ F, Q%) + (2y*/xcxc,) |Q1. (8.25)

Eq. (8.25) gives the stationary distribution directly in terms of the arbi-
trary function 52 which defines the interaction Hamiltonian (8.3).
Therefore, this solution is very general and comprises many different
special cases (cf. [80, 89]). For y=0, the result (8.24), (8.25) reduces
to the Wigner distribution of independent modes in their vacuum state.
For F,=0, Egs.(8.24), (8.25)describe modes, which are passively coupled
by the nonlinear properties d the medium. The same result would be
obtained, if F, is different from zero but fluctuates on a very short time
scale. This result explains the need o coherent laser sources for pumping
oscillators in nonlinear optics. In the following section we consider a
number o special cases contained in the solution (8.15).

84. Examples

The most important scattering processes in nonlinear optics are those
in which quanta in two modes are created. These second order effects
usually have the largest cross sections among the nonlinear processes.
These processes were already considered in Section 7 from the viewpoint
o the phenomenological theory. We can now compare these results
with the results of the present microscopic theory. Moreover, we discuss
theinfluenced variouskinds o multimode effectson the photon statistics.
These effects may arise from the multimode structure of the pump. They
can also come from the multimode structure of the output, which may
contain several signal-idler clusters. Higher order scattering processes,
which include three or more scattered quanta created by the destruction
of one initial quantum, have a considerably smaller cross section and
are therefore more difficult to observein practice. Some o their proper-
ties,. discussed in section b, differ quite markedly from the properties
predicted for second order effects. In particular it is shown, that the
instability leading to oscillation in such higher order modes is not a
continuous instability, like that of the second order effects, which resem-
blescontinuoussymmetry breaking second order phasetransition (cf.5.4).
Instead, we find that the oscillation threshold is marked by a discon-
tinuous jump o the mode amplitudes from zero to some finite value.
The instability causes a symmetry change as in the earlier examples.
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Thus, the oscillation threshold of these higher order processes resembles
afirst order phasetransition. This difference in the threshold behaviour
should be observable experimentally and would make the experimental
investigation of these processes worthwhile.

a) Parametric and Subharmonic Oscillation

1) Parametric Oscillation

For the case of parametric oscillation the basic scattering process is
represented by Fig. 22. The number d modes is n= 2. 2 takes the form

QF = Q*b{,bi)=b; b . (8.26)
|
F\r\mwuh R k|
wp .+ Kp |
AAANANA N
|
e W3 k2

Fig. 22. Parametric scattering

Therefore, the potential ¢° isgiven, according to Eq. (8.25), by

& =21B,1* + 218, — Q2y/xcrc,) (FF By B2+ F, Bt B3) +(2y%/xcic,) 1By ol
(8.27)
This result has already been obtained in [80]. It was compared with the

result d the phenomenological theory in Section 7.1. The potential (8.27)
has the continuous symmetry

Ap=¢, — @~ 49 =@ — @) (8.28)
with
01+ 0, =01+ ¢5. (8.29)

Here, ¢, and ¢, are the phases of the complex amplitudes g,, §, . For
|Fpl Skicyfy, (8.30)

the potential ¢° has a minimum for f, =, =0. Thisminimum has the
full symmetry (8.28)and is, therefore, not degenerate. For

|Fpl > KK,y (8.31)
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¢* hasa continuum of degenerate minima, given by

1Bul= 182l = VIFl/y —xx,/v?. (8.32)

Each singleminimum (8.32) breaksthe symmetry (8.28)which isthereason
for the degeneracy. Assuming sharp values for the amplitudes |8,| and
|8, well above threshold, we obtain from Eqg. (8.27)

Wy ~ expl(4y|F} B, Bal/kk,) . cos(@; + @, — )] (8.33)

where y is the phase d F,. Eq. (8.33) is the same expression as obtained
in the case d mode locking in Section 6.3. It demonstrates that the sum
@, + @, is indeed, locked to the phase of the pumping laser. Integrating
Eq. (8.27) over ¢, and ¢, we obtain the distribution for the amplitudes

|B,] and |B,]**.

WE ~ BB, In(4y |E»ﬂ1ﬂ2|/’<’<p) exp[— 2(|ﬂ1|2 + |ﬂ2|2 + Vz |ﬂ1ﬁ2|2/’<'<p)] .
(8.34)

I, isthe Bessdl function with imaginary argument and index 0. For typical
oscillators the quantity y is much smaller than x. Hence,

KK, /y?> 1. (8.35)

With (8.35) and the notation

I, =2IB1,2%/as, ; (8.36)
a=4(F\f}/2kx, ~ o), ‘ (837)

g = J/KkK,/2y%, (8.38)

Eqg. (8.34) takes on the more transparent form

Wi~ (L) " explal/TL - 1 L) - 0o/ T, - VI, (8.39)
This distribution is shown in Fig. 23. Because o (8.35), we have ay> 1,
and the distribution is sharply centered around /T, = Therefore,

the assumption of the phenomenological theory, that only one degree of
freedom becomes unstable at threshold (cf. Section 3.2 for the genera
case and Section 7.1 for the specia example), is clearly born out by the
microscopic result. Integrating Eq. (8.34) over the idler amplitude |83
we obtain

s |.B1| (a+2“0)|ﬂ1|2
Vi~ T8 e"p{ —2BPH TS |ﬂ1|'2/2a5)}

(8.40)

which reducesto the result (7.19) for oy > 1.

'3 The normalization hasto be carried out by integrating over |8, ,| from 0 to
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Fig. 23. The stationary distribution o theintensities;, |, of signal and idler, Eq. (8.39)for
various pump intensities a, Eq. (8.37). The sharp concentration of the distribution around
I, =1, isnot resolved in the diagram because of Eq. (8.35)

i) Subharmonic Oscillation

Experimentally, subharmonic oscillation is redized, if the two modes
cannot be distinguished from each other by any method. For this case
the basic scattering processis shown in Fig. 24. The number of modesis
n=1 Q takes theform

Qt = Q*(b})=b12 (8.41)
|
L/vvv\rvw Wy kl
wp, kp |
N\zwvvvv)l
Ivvvvww.w,. k|

Fig. 24. Subharmonic scattering

It should be noted, that the distribution for the subharmonic amplitude
is not obtained as the limiting case of the signal distribution (8.40), but
rather as the limiting case of the joint distribution of signal and idler
Eq. (8.27). The potentia ¢* is given, according to Eq. (8.25), by

¢ =21B41* — 2y/xx,) (F Bt?) +(2y%/rxc) 1By [* . (842
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This result coincides in form with the result of the phenomenological
theory, Eq. (7.27), and a result obtained in [82]. The theory given in
[82] was purely classical and dealt with thermal fluctuations in sub-
harmonic generation. Contrary to that treatment, we neglected in 8.1
al thermal fluctuations as being unimportant at optical frequencies,
and considered, instead, the quantum fluctuations as constituting the
essential noise source. The fact, that both theories give the same overall
result, apart from different expressions for the parameters of the distribu-
tion, isimmediately understood in view o the purely phenomenological
arguments given in 7.2. The potential (8.42)is shown in Fig. 18. The
minimum at g, = , = 0 becomes unstable for

IF,| > Kc,/27 . (8.43)

At first sight it seems that the threshold for subharmonic generation is
half thethreshold for nondegenerate parametric oscillation (cf. Eq. (8.31)).
However, it should be noted that x in EqQ. (8.43)is the limit of the sum
o the loss rates o the nondegenerate modes, i.e., k; +;c2—nc. There-
fore, the 2 in (8.43) cancels. The new minima of ¢ are given by

ﬁlzﬁrz x |Fp|/')r'_KKp/2'y2. (844)

Since they break a discontinuous symmetry, there exists no continuous
motion, which could restore the symmetry. Instead, the symmetry is
restored by discontinuous jumps between the two minima. The mean
time 7 between two such jumps has beeh calculated in [82] for thermal
fluctuations. For quantum fluctuations this result takes the form

VT w2, oy
e Sl Lr e /2F, ((2VFp KK ) ) (8.45)

dn(2yF, — kK ) y2KK,
Eq. (8.45)isvalid for

1>(Q2yF, —xx )k, > |/ 2x/x,. (8.46)

b) Higher Order Processes

In this, and the following section we make use of the solution (8.25)to
discuss the photon statistics of some processes, which have not been
discussed earlier in the literature.

We consider first the n-photon process, which is represented by
Fig. 19 and choose Q* according to Eg. (8.4). The general solution
(8.25)then takes theform

¢ =23 |B,)* ~ (2y/xx,) (F: f)[ B)™+F, H) (ﬁf)”")
v (v v

8.47
@iy [T1BP™. (847
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We split the complex amplitudes into absolute values and phases
ﬁv:rvexp_i(pv-

The potential ¢° has, in general, alarge number of continuoussymmetries,
sinceall phases ¢, may be changed continuously, subject to the constraint

) n,@,=const. (8.48)

The extrema of (8.47)are determined by the equations

0=r,—(ny/eic,r) F, [](r )™ +(ny*/crc,r) [1(r)*™ (8.49)
W) (W

for v=1...n. Without restriction of generality we have chosen the
phase of F, to be zero. By the transormation

ro=1/n, (kK /y2a)t CEm=2). 7, , (8.50)
with
a=[]ny, (8.51)

9]
we obtain the equations

0=7} = Fy(crc,)) ™ 2 (Pafirc) ' CEW =D [T F Y~ + [TF)*™ (8.52)
9] (v)

for 4= 1...n whose coefficientsare completely independent of theindex 4.
Therefore, the system of Eq. (8.52)is solved by putting

=T (8.53)

independent of v.
Eqg. (8.50) gives directly the relative magnitude o the absolute values
o the various mode amplitudes. For r we obtain the trivial solution

=0 (8.59)
and, in addition

—1 + FP(KKP)— 172 (‘yza/KKp)ll(zE"“ -2) (r)— 2+ En“
— )2

(8.55)
We observe, that the right hand side o Eq. (8.55)is formed by a power
o r of theorder 23 n,— 2, which passes through 0 for r =0 (cf. Fig. 26).
Theleft hand sideisformed by a polynomial of the lower order ) n, — 2,

whose coefficient is proportional to F,. It goes through —1 for r=0.
For F,=0 and for sufficiently small F,, the left hand side is always
smaller than the right hand side and no real solution of Eq. (8.55)exists.
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In this case r=0 is the only solution and we have a stable behaviour
with small amplitudes. If F, becomes sufliciently large, F,=F,_, the
polynomial on the left hand side will finally, at some point, be tangent
to the power of the right hand. For till larger values o F,, the two
curves will intersect in two points. Exemptionsto thisgeneral behaviour
are al processes with Z n, < 2, which are the second order processes

W“ﬁ ) Ky
:\L:)Vp\'/'ig-’\./\/\pl "““"V‘PwZ'kz
k,vu-vvvv\.»wa.ka

Fig. 25. Third order parametric scattering

discussed in @). The first intersection for smaller r defines a maximum
of ¢* which corresponds to an instable state. The second intersection
for larger r givesa new set of degenerate minimadf ¢*°, which correspond
to new stablestationary states, each o which breaks the phasesymmetries.
Since, in general, severa (continuous) phase symmetriesare present, the
new minima are degenerate with respect to several (continuous) param-
eters. Therefore, several different diffusion modes exist which carry the
system through the degenerate new minima. With increasing F, the
maximumd ¢° isshiftingtosmaller valués o r whereasthe new minimum
shiftsto larger r vaues. We find, therefore, a multistable behaviour with
the two stable states at r=0 and at r > 0. We consider severa specia
cases d Eq. (8.55).

i) For the scattering process Fig. 25, we obtain
—L+IF |y er,) 34 r=r*, (8.56)
Thethree cases F, £ F,_areshownin Fig. 26.

ii) Weconsider thecaseinwhichthethree modesd Fig. 25degenerate

to a single mode, the third order subharmonic with = %w‘,. In this
caseEq. (8.47) givesa potentia withthediscontinuous threefoldsymmetry

oo +in—e+in. (857)
This potential is shown in Fig. 27. The minimum at r=0 has the full
symmetry (8.57).For F, larger than somecritical valueF,_, the equation
— L+ 274 F |y P (k)" ¥ =1 (8.58)

which followsfrom Eq. (8.55), givesa new minimum of ¢* for some root
r>0 (cf. Fig. 26). This new minimum is degenerate with two further
minima, according to the symmetry (8.57).
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Fig. 26. Thresholdcondition andextrema of the potential 4 for third subharmonicgeneration
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Fig. 27. The potential (8.47)for third subharmonic generation above threshold
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iti) For the general case of the m-th subharmonic, Eq. (8.47) has an
rn-fold discontinuous symmetry

p—o@+2n/m— - >+ 2nk/im— .- >+ 2n. (8.59)
The threshold condition is determined by
— 14+ Fp(’”cp)_ 1/2 (yzm"'/rcrcp)”‘z’" “DIm-2=,2m-2 (8_60)

All that has been said for the third subharmonic can be carried over to
this more general case.

¢) Mode Clusters in Parametric Oscillators

We consider now an example in which @, in the Hamiltonian (8.3),
describes several competing scattering processes — the simultaneous
oscillation of several signal-idler clusters in parametric oscillators. A
cluster isdefined asa pair consisting of one signal and one idler. Severa
clusters may oscillate simultaneously for thefollowingwell known reason
[81]: The matching condition

ky+ky=k, (8.61)

has, in oscillators o finite length, only to be fulfilled up to multiples of
2n/L. Thisweaker condition, together with

0+, = w, l (862)

is satisfied simultaneously by severa clusters, which are equidistantly
distributed over a broad frequency range. The frequency difference be-
tween adjacent clustersislarge compared to the natural mode spacing in
the resonator cavity. For I clusters, 2* takes the form

Q" =Y g,b1,b3, (8:63)

where b{, and b3, are the creation operators of the signal and the idler
in the v-th cluster. The general potential (8.25) then takes the form

" =23 (B +182,)) = 2y(xxc,) ' F, ¥ (g, B%,B%, + cc.)

#2070 T 0,8 11 BB .
where the phase of F, has been put equal to zero. For
Fo=sxk,/ylg.l (8.65)
¢° hasaminimum at §,=0. For
F,>xx,/71g) (8.66)
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this minimum is shifted to finite values of §, and we have symmetry
degeneracy with all its consequences.

It isinteresting to note that the expression (8.64) contains a coupling
of the phases of different clusters in its 4th order term. The phase cou-
plingfixesonly thesum p,, + p,,, whereas the phase differencep,, — p,,
is fill arbitrary, as was found for a single signal-idler pair. Therefore,
the signal phases and the idler phases separately are subject to a free
diffusion.

The phase sum p,, *¢,, is obtained by minimizing ¢*. The phase
sums o different clusters are therefore correlated. A calculation of the
details of this phase coupling is usually difficult, since a strong cou-
pling between the amplitudes and the phases has to be expected. The
origin o thiscoupling can be seen by the following qualitative argument:
The phases of signal and idler are determined, according to Eqg. (8.64),
by two main influences. These are the gain (~ F,), which has to be as
large as possible, and the saturation (~ 4th order term), which has to
be assmall as possible, in order to minimize ¢*. The gain isa maximum if

@1yt @2, —p,=0 (8.67)

where y, is the phase of the complex coupling constant g,.

However, for this arrangement of phases the saturation is also a
maximum, since now all terms in the double sum in Eq. (8.64) are posi-
tiveand no compensation of different termsis possible. In order to have
minimum saturation, the equidistribution o the quantity p,, +o,, -,
between 0 and 271 would be most favorable, since then the terms of the
double sum could compensate each other. On the other hand, the ampli-
tudes of all clusters for which the relation (8.67) does not hold, have to
be small, since the gain is small. Therefore, a strong coupling between
amplitudes and phases can be expected. In practical cases one usualy
has a small nhumber o clusters. These are known to show an irregular
spiking, which can be understood by the mechanism described above.
Each cluster tries to fulfill the relation (8.67) itsef, at the cost of the
other clusters, which cannot fulfill relation (8.67) at the same time, because
saturation would then be too strong. The stationary state is multistable,
since each cluster may be the dominant one.

d) Multimode Laser Pump

All the calculations o this chapter can be generalized further by taking
into account the multimode structure of the pumping laser. We simply
have to replace the interaction Hamiltonian (8.3) by

H, = %Hz (8.68)
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where each H, corresponds to one mode of the pumping laser and has
theform givenin Eqg. (8.3)

H,=ih(F, b}, — F&b,,) +ihy,(b,,Qf —b},Q,). (8.69)

Here we have taken into account that the laser modes excite the medium
directly at various frequencies w, ;. The directly excited modes b,,, b,
giveriseto the same or to different scattering processes. These scattering
processes are assumed to be of the same kind asin 8.1 and are described
by the operators €2,. All considerations of 8.1 remain valid, but they
now refer only to one single mode o the pumping laser. We may use
the new Hamiltonian to go through the analysis o 8.2, 8.3. Again we
obtain a Fokker-Planck equation for the Wigner distribution of the
process. Its stationary solution is given by Wi ~ exp(— ¢°), with

¢*=23 1B - 2K'IZ[M’<—1F*191+ pa QD) — ikt 1P, (B70)

We redlize, that Wi factorizes with respect to the contributions of the
various laser modes. This factorizing does not exclude, however, that
additional correlations between different resonant modes are produced
by the multimode structure o the pump. In order to see thisin more
detail, and as an illustration o the general result (8.70), we investigate
the stationary distribution for a second order parametric oscillator which
is pumped by a multimode laser. The simplest situation occurs when
each laser mode pumpsitsown signal-idler pair. In thiscase each function
Q, depends on itsown pair o variables(amplitudes),and the distribution
(8.59) factorizes with respect to different signal-idler pairs. No correla
tion between different signal-idler pairs occurs in this case. Another
possibility is that all laser-modes excite the same dominating signal-
mode fo, fE. However, because o the frequency differences between
the laser modes, there corresponds a separate idler mode S;, f¥ to
each laser mode. In this case the potential ¢* takes the form

¢*=2 (wolz +y |ﬁz|2) -2ty VaKpi FrBoBi+ cc)
4 4 (8.71)
2! ZA: Y%K;}.l |ﬁ0ﬁx|2 .

The Wigner distribution W; ~ exp(— ¢°) factorizes with respect to
the amplitudes o the various idler modes §,. Nevertheless, because
they are all combined with the same signal mode S, there existsa strong
correlation between the different idler modes, which will be considered
below.
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First we calculate the distribution of the signal mode amplitude by
integrating over all complex idler amplitudes. We obtain

1
1+ Z Yf(KKpA)_ HBol?
1

Wi(Bo, BE) ~

23 VEIF (k2 2 ol (8.72)
cexp = 21812+ —* —
fo L+ Y yi(cx,,) " Bol?

A

For

gyi/xrc,,l <1/1Bol (8.73)
thismay be reduced to

Wi~ exp [— 2 (1 -y yg(m,,l)—lw,,m) 1B,/

i (8.74)
~2 Z YAYA /1|2 pAZ’CpAl wo,4

The distribution of the signa mode turns out to be of the same
form as for single-mode pumping. The amplification due to the various
pump modes is simply additive. The threshold condition for oscillation
o this typeis given by

Y Yilkx,) 2 IF, P21 (8.75)

A

Because of the additivity o the gain due to the single laser modes, we
obtain oscillation already for pump intensities |F,,|?, which, in a single-
mode pump, would not be sufficient to drive parametrlc oscillation.
The saturation is described by the fourth order term of (8.74). This
term contains a double sum over all modes and, hence, contains a
factor proportional to the square o the number of pumping modes N,.
The maximum of the distribution (8.72) above threshold is at

Z V%K;).z |F 1|2 —K?

1By = (8.76)

22)’17’11 AI K IK;).ZK;}.I’ '

Because of the large saturation its order of magnitude is smaller by a
factor N, if compared with single mode pumping with a pump intensity

\F %/} = 3 |F, %K} (8.77)
A
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and with
. (8.79)

Finally, we consider the correlation between the different idler modes
B, which is produced by their common signal mode. Integrating (8.71)
over the complex By-plane we obtain

1
Wi({B, B*D ~ 1+ z%le—lK;ll 1B,

_ (8.79)
2’2sz“/1 pll .B).Z

cexp [—2 24 ———
I T E
A

Thisexpression no longer factorizeswith respect to different idler modes.
In particular (8.79) depends on the phases d the individual idler ampli-
tudes and isinvariant only against the rotation d the phaseangle of the
collective quantity Z‘F"*’IV’IK”_AI B, This result has to be contrasted with

the single mode case, where the idler phase was found to be arbitrary, if
the signa phase was unknown. In the present case, the phase sum of the
signa and each idler is determined by the phase d the corresponding
mode d the pumping laser. Therefore, the correlation d theidler phases
isnothing but an image of the correlation d the phasesd the laser modes.
If the pump light contains phase locked modes which give a periodic
pulsetrain, then the idler phasesare locked and give rise to a new pulse
train. If the pump modes have random phases, the idler modes will
also have random phases. The examples which we have considered in
this section were only two possibilitiesout of a large manifold of mode
configurationswhich may be redlized in a given medium and a given
cavity. Due to the lower threshold it seems possible to discriminate
experimentally the case in which one signa mode is driven by severd
pump modes from other types o oscillation. In general, however, one
has to expect that the formation o severa clusters is more likely for
multimode pumping and that experiments will not be reproducible.
Therefore, there is at present no reason to give a further evaluation of
our resultsfor these cases.
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1. Introduction

This paper deals with the dynamics o open systems (6)moving ir-
reversibly under the influence o their surroundings (23). As a basis for
the discussion of an open system 6 we use a complete microscopic
description of the composite system 66 23. By eliminating the coordi-
nates of B we infer the behavior of 6. The motivation for this investiga-
tion isthat nature frequently confronts us with coupled systems 6 and 23

Statistical Treatment of Open Systemsby Generalized Master Equations 99

only one of which, say 6. is of experimental relevance. It is then a dictate
of economy tolook for a™ closed description of the dynamics of € alone.
Let us mention just three out of the countless examples.

(1) The motion o penduli is usualy found empirically to be de-
scribable in terms of the equation of motion of an ideal oscillator aug-
mented by a suitable friction term. Statistical mechanics explains this
behavior by accounting for the coupling of the pendulum (B)to its
surroundings (23). When the coordinates of 23 are eliminated from the
equations of motion for all degrees of freedom o ©@® B the influence
of 23 0on & is found, under certain conditions, to amount to a friction
force.

(2) In light scattering experiments on simple liquids one usualy
observes long-wavelength transport processes like heat diffusion and
sound waves. There is a macroscopic theory of the long-wavelength
behaviour of liquids, namely hydrodynamics. The set of hydrodynamic
variables (number density of molecules, energy density, velocity of
molecules averaged over volume elements large compared to inter-
molecular distances, etc.) may belooked upon as an open system 6 with
al other degrees o freedom of theliquid constituting a™ surrounding™ 23
The statistical-mechanical derivation of hydrodynamics requires the
elimination of the coordinates of 23 from the microscopically complete
description of the liquid S@® 23

(3) Experiments on lasers refer to the radiation output (G) and never
to the active atoms nor the various pump and loss mechanisms (B)
involved. While the theory has to be based upon a description of al the
interacting components o the laser system, it is natural that it should
aim as it has at setting up dynamic equations for the experimentally
relevant radiation field (6) alone.

The physical systems treated in some detail in the present paper are
the damped harmonic oscillator, superconductors, superradiant devices,
the laser, and the Heisenberg magnet near the Curie Temperature. In
these cases we have as the respective open system & and its surrounding
23 the ideal oscillator and a heat bath, electrons (6) and phonons (23)
for a superconductor, radiating atoms (G) and radiated light (23)in the
case of superradiance, radiation field (G) and active atoms as well as
pump and loss mechanisms (23)for thelaser, and, finally, long-wavelength
(6)and short-wavelength (23) spin fluctuations for the magnet.

Since the systems mentioned physically have scarcely anything in
common (beyond being of the structure 6@ B), it is not surprising that
a vast variety of different formal techniques have been used in the
literature in dealing with them. Rather than giving a survey of various
formalisms we here present a unified treatment of open systemsin terms
o generalized master equations.
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Master equations were first introduced into quantum statistical
mechanicsby Pauli [ 1] to describethe relaxation of macroscopicsystems
into thermal equilibrium. In their original form used by Pauli they are
rate equations for occupation numbers of quantum levels which are
dynamically connected by suitably chosen transition rates. Pauli's
derivation of master equations from Schrodinger's equation was based
upon the assumption that the expansion coefficientsd the wave function
in an expansion in terms o energy-eigenfunctions have random phases
at all times. This assumption makes possible a dynamical description of
the system in terms d occupation numbers o energy levels rather than
in terms o the complex probability amplitudes o the wave function
with respect to energy eigenstates. Later work by van Hove [2], Naka-
jima {31, Zwanzig [4], Montroll [5], and Prigogine and Resibois [6]
has shown that the unsatisfactory assumption d continuously random
phasesis unnecessary. Pauli's master equations have proved to be special
cases of rigorous socalled generalized master equations. For a survey
o these modern master equations we refer the reader to [7]. In the
present paper we will use a generalized master equation constructed
independently by Nakagjima [3] and Zwanzig [4].

The Nakgima-Zwanzig theory will be discussed in detal in
Section II. Let us at this point make just a few qualitative introductory
remarks on it. The starting point is the wellknown equation of motion
for the density operator of the composite system S® B

Wi(t)= — (/) [H, W(t)] = — i LW@) (1.1)

where W(t) and H denote the density operator and the Hamiltonian,
respectively. Only that part of the information contained in the Liouville-
von Neumann equation (1.1) which refers to the subsystem © is con-
sidered relevant. By using a certain projection operator B(P*= y) a
reduced density operator o(t) for the open system & is obtained from
the full density operator W (r). Schematically,

WH——o(), (12)

which leaves open, for the moment being, how the full density operator
W (t) is to be operated upon by the projector B to yied the reduced
density operator ¢(t). With a suitable definition d what (1.2)precisaly
means one finds that the Liouville-von Neumann equation (1.1) entails
an equation o motion for the reduced density operator ¢(t) o & which
is o the following form

0= —iLgeo(t) + g dt' K(t, t")e(t) T 1(2) (1.3)
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Expressionsfor the effective Liouvillian L, the integral kernel K(z,t'),
and the inhomogeneity I(t) will be given in Section I1.

As an illustration o the potential usefulness of the theory behind
Eq. (1.3)let us briefly mention two different applications. The firs isthe
one Nakgjima and Zwanzig had in mind when constructing the general
theory. It is concerned with the above-mentioned problem posed by
Pauli: how do the occupation probabilities for the energy levels d a
macroscopic system relax to an equilibrium distribution, starting out
from somearbitrary initial distribution. To attack this problem Nakajima
and Zwanzig consider a Hamiltonian H = H, + H, consisting d a main
part H, and a small perturbation H,. The set o &l diagona elements
{n|W(t)ny d the density operator with respect to the eigenstates of
H,(Hy|n) = E,|n)) istaken as the open system & which interacts with the
surrounding B constituted by the off-diagonal matrix elements of W(x).
The projector B is then chosen as B|n) {(n’| =3, |n) {n| whereupon the
reduced density operator d 6, defined as o(t) = B W(t), becomes just
the diagona part o W(t) in the H,-representation. The procedure
leadingfrom the Liouville-von Neumann equation(1.1) tothegeneralized
master equation (1.3)then amounts to eliminating the off-diagonal part
d W(t) from Eqg. (1.1). Under appropriate conditions for the Hamil-
tonians H, and H, and for the initia state W (0) Eq. (1.3)can be shown
to reduce to Pauli's original master equation [8]. — The second applica-
tion we want to mention here has first been made by Argyresand Kelley
[9]. These authors consider a spin system (6) weakly coupled to some
large system in thermal equilibrium (B),i.e. @ heat bath. The reduced
density operator ¢(¢) of the spin system & is defined as the partial trace of
the full density operator W(t) of S @ B, o(t) = trex W(t). Under suitable
conditions for the coupling of the spin system & to the heat bath B the
generalized master equation then describes the relaxation of the spins
into thermal equilibrium. — We have intentionally mentioned these two
applications here, partly because of their historical importance but
mainly because they are so different physicaly. They indicate the re-
markable flexibility of the Nakajima-Zwanzig theory.

In spite of the flexibility of the generalized master equation (1.3)
stressed above there are limits to its practical usefulness which it is
appropriate to underscore hereas well. If EqQ. (1.3)isto be used in describ-
ing the motion of a given open system, the rather involved formal
expressionsfor theintegral kernel K (t) and theinhomogeneity () haveto
be evaluated explicitly first. The evaluation of K and | generally requires
series expansions of these quantities. If for a given problem there are no
small dimensionless parameters in terms of which such expansions can
be generated, the generalized master equation (1.3) remains an empty
concept. We will therefore put specia emphasis, in @l the applica-
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tions to be presented in this paper, on identifying the respective relevant
small parameters.

The paper is organized as follows: Section II gives a detailed
discussion d the projector technique. In Sections III through VII we
discussthe applicationsto linear damping phenomena, superconductors.
superradiance, lasers, and the critical dynamicsd the Hel senbergmagnet.
Each section is headed by a separate introduction.

2. Generalized Master Equations
2a) Introductory Remarks

We here derive and discuss various modificationsd the generalized
master equation (1.3), using Zwanzig's projector technique. Thefirst case,
considered in subsection (2b) is that of a closed system ©@® B whose
Hilbertspace Hegs has the property Hses=Hes® Hs. The reduced
density operator of the open system & is ¢(t)=tr, W(t). Next, in sub-
section (2¢) we drop the condition that €@ B be closed. If © @23 isan
open system itself since there are time-dependent external fields acting
on it, the Hamiltonian H(t) and the Liouvillian L(t) display an explicit
time dependence; consequently, operator products occuring in the
generalized master equation for ¢(t) of © haveto betime-ordered. On the
other hand, € ®23 may be an open system because it movesirreversibly
under the influence d some other system G ; in such a case the equation
of motion for W{t) of S®B may ill be in simple cases, d the structure
W = — i LW, however, the Liouvillian is no longer defined as the com-
mutator with a Hamiltonian; yet a generalized master equation till
governsthe behaviour d ¢ o &. Then, in subsection (2d) we deal with a
situation where the dynamics & S @B is described by a reversible
or irreversible equation of motion for a quasiprobability distribution
W over c-number variables; this equation o motion is assumed to be a
first-order differential equation in time, i.e. to havetheform W= —iL W,
the set of c-number variablesis separated in two subsets. © and 23; the
generalized master equation for a reduced quasi-probability distribution
¢ over the set of variables € is derived; this is the most general version
of the Nakgima-Zwanzig equation, since it holds regardless o the
structure of the Hilbertspace $¢ s and o whether the motion of € ® 23
is reversible or irreversible. Finally, in subsection (2.e), we use a formal
integral of the generalized master equation (1.3) to construct expressions
for multi-time correl ation functions of observablesd the open system 6;
theseexpressionscan be evaluated once the solution o Eq. (1.3)is known;
they can also be used to generate hierarchiesd equations o motion for
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correlation functions or Green's functions which it may be easier to
solve than the generalized master equation (1.3) itsalf.

Each o these modifications d the origina Nakajima-Zwanzig
equation will be needed in one or several of the applications given later
in Section I1I-VIL

2b) Open System & asSubsystem of a Closed System & @ 23

We consider a closed system & @ 23 composed d two interacting parts,
€ and 2 The observables of &(B) are represented by operators
S,, S5, ...(B,, By, ...} in a Hilbertspace Hs(Hx). The Hilbertspace Hg s
o thecomposite systemisthedirect product He g = He ® He. Physicaly,
this meansthat € and 23 become physicd systems, each in its own right,
if their interaction is switched off. The state d & @ 23 is described by the
density operator W () which obeysthe Liouville-von Neumann equation

W(t)= —(i/h) [H, W(]=—iLW(). (2b.1)
The Hamiltonian H and, correspondingly, the Liouvillian L consist o
three parts

H=Hg+ Hg + Hgg

2b.2
L=Ls+Ly+ Loy (262

referring to the free motion d & and 23 and an interaction, respectively.
If the solution W(t) o Eq. (2b.1) is known, expectation values d observ-
ables of €® 23 may be evaluated as, e.g.,

(B,S) =1r B;S, W. (2b.3)

We now assume that only & is experimentally relevant, ie. that the
interesting expectation values are

(S, 5,...8) =trS, 5,...8 W(1). (2b.4)
Since the trace operation can be carried out in two steps,
tr=tr, tr, , (2b5)

the expectation values of observables of & can be written in terms of the
reduced density operator of &

o(t) =trg W(t) (2b.6)
as

(8:8,...S) =trsS,S,... Smolt). (2b.7)
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This suggests to look for a "closed” description o the dynamics of 6,
that isto construct an equation o motion for the experimentally relevant
reduced density operator ¢(t). Such an equation should follow from the
Liouville-von Neumann equation (2b.I) by eliminating from it the
coordinatesdf the irrelevant subsystem 23 In fact, such an elimination
can be carried out formally using a method designed by Nakjima [3]

and Zwanzig [4]. Let us briefly sketch this procedure. The full density
operator W(¢) is decomposed into two parts using a projector

WH=BWo+(1-P W), P =9. (2b.8)
The projector B is defined as

PB=B, try, trgB,s=1. (2b.9)
As a consequence o this definition

B W(t)= B, 0(t) (2b.10)

is the relevant part of W(t) containing all information with respect to
the subsystem & whereas the irrelevant part (1 — B) W(t) takes up the
information with respect to the subsystem 23 and to correlations between
& and 23 The parameter B, occuring in ¢ may be chosen arbitrarily
within the indicated constraint of normalization, trg B, = 1. As we will
see below it plays the role o a reference state of the system 23 to be
eliminated. The physically important question of how to best choose this
reference state will also be discussed at the end o this subsection. The
formal operations to be presented now are independent o how B, is
chosen. By inserting the decomposition (2b.8) in Eq. (2b.l) and acting
on this equation from the left with ¢ and (1— B), respectively, we get
two coupled equations for g W and (1 — L) W

BW() = —i BLBW()— i PL(L—B) W()
(I-P WO = —i(1—B) LBW(@) —i(1 - B) LU - B) W ().

The second o these equations can be integrated formally to yield the
irrelevant part o W(r), (1- B) W(¢), in terms d the relevant part LW (r)

(1-P) W@ =exp[ -i(1 =B} Lt] (1-B) W(0)

_ § dt'exp[ —i(1 — R) L] (1— B)LPW(t—1).
0

(2b.11)

(2b.12)

A closed equation o motion for the relevant part, ‘B W (¢), isthen obtained
by inserting the formal integral (2b.12) into the first of Egs. (2b.11). This
gives, after performing the partial trace tr, the generalized master
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equation for the reduced density operator ¢(t) of ©
t
o(t)= — i Lot + fdeK(t)elt —t)+1(). (2b.13)
0

The effective Liouvillian L., the integral kernel K(z), and the inhomo-
geneity I(f) come out as

Lot =trg LB o= Lo+ trg Lop Bres
K(t)= —trgLexp[—i(l = P) Lt] (1- P} LB,

= —trgLeggexp[ — i(1 — B) Lt] (1 — P) (Ly + Lew) B,s (2b.14)
I()= —itrg Lexp[ —i(1 =By L] (1 - P) W(=0)

= —itr, Lggexp[—i(l = B)Lt] (1-B) W(0).

In simplifying these expressions we have used the decomposition (2b.2)
for the Liouvillian L and the identities

trg Lg=0

(2b.15)
tr, L, =L, tr,

following from the cyclic invariance o the trace and the commutativity
of operationsin $g and $Hy, respectively.

The generalized master equation is an inhomogeneous integro-
differential equation in time. It describes how the open system @ moves
under the influence d 23 It isformally exact. Together with the relation
(2b.12) it is equivalent to the Liouville-von Neumann equation (2b.1).
In thetrivial case of no interaction between € and 23 it reduces, of course,
to the Liouville-von Neumann equation ¢ = — i Lge for the then closed
system 6.

For later use we want to provide ourselves with a formal integral
of the Nakajima-Zwanzig equation (2b.13)

o=V e+ f de' V() I(t-t). (2b.16)

This defines the integral operator V(z) such that V(t) ¢(0) solves the
homogeneous part of Eq. (2b.13). We may look upon V() as a time
evolution operator for @ since it uniquely relates the density operator
o(t) with its initial value ¢(0) if the inhomogeneity I(z) is known. The
definition o V(¢) implies the following formal properties

V)= —iLs V()T } dt K(t)V(E-t)
(0]

V() =1 (2b.17)
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Let usnow discuss the conditions under which the Nakajima-Zwanzig
theory sketched above can be put to practical use. A necessary condition
certainly is that it must be possible, for a given physical system, to
explicitly evaluate the rather involved formal expressions (2b.14) for
K(z) and I(f). Such an evaluation in general requires a perturbation
expansion of the exponential exp[ —i(1 — B) (L, + Ly T Ley)t] occurring
in (2b.14) in terms of the interaction Liouvillian L, The resulting
perturbation seriesfor K(t) and I(t) are easily written down formally and
read, for the Laplace transforms of these quantities,

K(z)= of dre "' K(t)
1]

“ =Y trgLeg U@ [~ il —P) Log UG

n=0

(1 =) (Lg + Low) Bes (2b.18)

I(z)= ojodte‘“l(t)
0

=—i i trg Leg U(2) [ — i(1 = B) Loy U(2)]"(1 — P) W(0)
n=0
with
U(z)= oj? dte™*"exp[—i(Lg + Lg) t] =z + i(Ls + L1t
0

However, these perturbation series make sense only if they can be
identified to go in terms of a small dimensionless parameter which is,
formally, O(Lsg)/O(Ls T Ly). If the interaction between € and 23 istoo
strong for the expansions (2b.18) to converge, the Nakajima-Zwanzig
equation isin general useless. If, on the other hand, the seriesdo go in
terms of a small dimensionless parameter, the use of the generalized
master equation offers substantial advantages over other methods of
evaluating ¢(t) as, e.g., the perturbation theoretical solution of Eq. (2b.1).
Thislatter method proceeds by expanding the time evolution operator in
o(t) = trgexp[ — i(Le T Ly T Leg)t]- W) interms of L, It iseasy to see
thatan infinitenumber of terms of all orders of this elementary perturba-
tion expansion have to be summed up in order to recover a given finite
order approximation to the series (2b.18).

Another point we want to discuss here concerns the physical meaning
of the parameter B, occurring in the definition (2b.9) of the projector R
and the question of how to best choose it. Let us emphasize again that
the Nakajima-Zwanzig equation (2b.13) holds whatever choice for B,
is made, as long as trg B, = 1. Theformalism thus doesn't tell us how
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to choose this parameter. What we do see, however, from Eq. (2b.18), is
that the influence of 23 on & expresses itsdf in terms of correlation
functions tr, B,(t,) B,(t,)... B,(t,) B, Here the B; are the observables
of 23 occurring in the interaction Hamiltonian. Their time evolution is
due to the free motion of B governed by the evolution operator
exp[ —iLgt]. The state in which these correlation functions are to be
evaluated is the parameter B, This latter thus plays the role of a
reference state for 23. Therefore, the selection o the reference state
should be based on the physics of a given system &0 2 3 and not much
can be said in general. M ore specific statements are possible, e.g., for two
specia classes of problems. (i) If 23 is a large system in equilibrium
interacting so weakly with a small system & that the equilibrium of 23
is hardly disturbed then a reasonable choice for B, is, of course, the
unperturbed equilibrium density operator of 23. (ii) If € and 23 influence
each other strongly — the expansions (2b.18) being possible though — and
if the behavior of & near a stationary regime is to be investigated, then
the best possible reference state B, for 23 can beevaluated selfconsistently
in the following way. First o(¢) is calculated with the expansions (2b.18)
truncated at some order n with B, unspecified. Then, using (2b.12),
(1-B) W(r) is evaluated in terms of g(f) with the expansions for
the exponentials in (2b.12) carried up to order n. The stationary
density operator of 2 is then obtained as B = trs {PW(t— o0)
+ (1- P) Mt — 0)}. Identifying B with B,.; one obtains an equation for
the reference state of 23. If such a procedure is carried out, the density
operator o(t) of & as well as the stationary density operator B of 23 are
determined by a selfconsistent systematic perturbation scheme. — Let us
stress again that a physically well-motivated choice o the reference
state B, of 23 isnot required for the generalized master equation (2b.13)
to hold. It is, however, necessary to make a good choice for B, in order
for the theory constituted by (2b.12), (2b.18) to give a reasonabl e descrip-
tion of the physical processes in question in low-order approximations
of the expansions (2b.18) — if a low-order description is possible at all.

2¢) Subsystems € of Open Systems & @ 23

€ @23 may be an open system since there are external time-dependent
fields acting on it. Then the Liouville-von Neumann equation (2b.l)is
replaced with

W(t) = — (i/h) [H(t), W(t)] = —i L) W(1). (2¢.1)

That is, the Liouvillian L(t) displays an explicit time dependence. Since
the commutator [L(t), L(t')] need not vanish we have to introduce a
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time-ordered product in Eq. (2b.12) which thus becomes

(1= W= —iT exp{ i dea— L(z')} (1 ) W(0)
0 (2¢.2)

_ 5 dr’ Texp{ — ; de'(1— P) L(t”)} (1—P) L) BW (1) .

Here T is the usual time-ordering operator. The Nakajima-Zwanzig
equation now reads

o()= — i Ly(t) o(t) T [ dt' K(t, t) o(t') + 1(2)
Leff(t) = trB L(t) Bref (2C3)
K(t,t)= —tr, L(2) Texp{ —ifdr (1 -P) L(z")} (1—PB) L(t') Byt

1) = —itrmut)rexp{ —i j dr'(1 — ) L(t) } (1— ) W(0).

Wewill need thisversion o the generalized master equation in Section 2e
in order to calculate correlation functions of observables of .

On the other hand, € @ 23 may be an open system moving irreversibly
under the influence of some other system €. The motion of © @ 23 may
then, o course, be described by a Nakajima-Zwanzig equation of the
form (2b.13). We here consider — in vigw of the applications to be given
|later — the simple case where € isa large system characterized by relaxa-
tion times much shorter than those & €@ 23 In such a case we may
neglect retardation effects in the Nakajima-Zwanzig equation for the
density operator of €@ 23 — which we keep denoting by W(t) — and thus
obtain the Markovian master equation

W)= —iAW(®) , (2c.4)
with
A=Lg+i | dtK(t). (2¢.5)

The quantities L. and K(t) are given by (2b.14) with the symbols occurr-
ing there appropriately reinterpreted: L isthe Liouvillian of €@ + @€,
P=C,,tr, isthe projector used to eliminate the coordinates of € with
C..s asthe reference state for €. It iseasily checked that the Liouvillian A
generating the time evolution of the density operator W(t) of S 23,
although no longer being of the form A=[H, ...], conserves probability,
1.€C.

trgeed=0. (2c.6)
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We now assume that only the subsystem € o & @ 23 is of experimental
relevance and thus construct the equation of motion for g(t)=tr, W(x).
By going through the arguments of Section 2b again we find that o(t)
obeys the Nakajima-Zwanzig equation (2b.13) with A=A+ A + Agg
as Liouvillian instead of L. Thisis so since at no point in Section 2b we
have made use of any properties of L other than trL =0, try Ly =0 and
tr, Lg=L, tr, which A has, too.

2d) Quasiprobability Distribution Functions

For some applications o the Nakgima-Zwanzig equation it is advan-
tageous to describe the state of the system by a quasiprobability distribu-
tion of a complete set o observables rather than by a density operator.
The observables are then represented by c-numbers variablest
S.,S,,... B, B,,... corresponding to operators §,,S,,....B,, B,, ...
such that quantum-mechanical expectation values are given as moments
o the quasiprobability distribution function W(S,, B;, t)

8. B, D>=treep...5...B,.. . W(
< i) =tlges j () (2d.1)
=Segn--Si-.. B)... W(S, B, 1).

Here the symbol
Sses=JsIp (2d.2)

denotes an integration over al variables S; and B,. It is always possible
and can be very convenient to use such a c-number description since it
sometimes reveals a physical process in question to be closely related to
some classical random process. The c-number formalism can thereby
help to gain physica insight and to find an adequate approximate
treatment for the system considered. For detailed discussions of the
mathematical properties of quasiprobability distributions we refer the
reader to{9—14]. If the density operator W obeys a first order equation
of motion in time, the associated quasiprobability distribution W(S,, B..t)
can be defined such as to do so, too [15]. We then have

W(S; B, )= —iLW(S, B, 1), (2d.3)
where L is a differentia operator with respect to the variables S, B,.

' Whenever necessary, we distinguish operators and associated c-number variables
by the circonflex on the operator symbol.
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This "Liouvillian™ will have the properties
L =Le(S) + Ly(B) + Lew(S:, B)
Sepsl =IsLe=Tple=0 (2d.49)

SmLe =LGSB .

We now assume that only the variables S; are of direct experimenta
relevance and therefore consider the reduced quasiprobability distribu-
tion function

o(S;, 1) =T W(S,, B, 1). (2d.5)

Itiseasy to see, using (2d.4), that Eq. (2d.3) impliesa Nakgjima-Zwanzig
equation for o(S;, t). This latter reads like Eqg. (2b.13) but al symbols
occurring there have to be appropriately reinterpreted. Especialy, the
projector now is P = B,(B;) I and the reference state B,(B)) is a
quasiprobability distribution for the variables B;.

The c-number formalism just sketched becomes especialy useful
under the following circumstances. Suppose the separation of the set of
variables {S,, B;} in two subsets {S;} and {B;} does not correspond to a
separation of the physical system @ @ 23in two subsystems & and 23 with
Hilbert spaces § and Hy, respectively. It is then impossible to define a
reduced density operator g(f) =tr, W(t), since the partial trace trg can-
not be defined. It is possible, however, to construct the reduced quasi-
probability distribution function by ¥2d.5). We will make use of this
fact in Section 7.

2€) Corréation Functionsof Observablesof ©

We here want to show how correlation functions of the observables S;
d the open system & can be evaluated once the Nakajima-Zwanzig
equation (2b.13) for the reduced density operator ¢(t) is solved. To this
end we follow Haken and Weidlich [16] and couple the system G to

fictitious time-dependent external fieldsa,(t), y;(¢) such that the Liouvillian
becomes

LO=L+a,7,1t). (2e.1)
ThereL =L, + Ly + Lgg IS the time-independent Liouvillian encounter-

ed before. The additional term I(«, v, t) isdefined to act on some operator
X as

la, p,t)X = Z{a 1)S; X — () XS) . (2e.2)
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Since the density operator of © may now be written as?
t

oo, y, t)=tr, Texp{ —if dt’L(t’)} W(0)
0

=1trg

Texp{ i [drHE) —i Y j dr' a(t') S,H (2e.3)
0 i 0

- W(0) {Texp{ +i tjdt’H(t’) +iy }dt' () s,.} ,
0 i 0

we have the following identity for correlation functions o the S;

Ko (8, 1) = (S5, (£7) Sy (1) ... Sip (8) S5 () ... S,(22) S;, (8,
1 6 6" .
(OO do,(0)...00,0) (e ..oty O

trG Q(a’ 7 t)
a,y=0
We have written down this expression Fx the case t; <1, ,, H<t
More general time orderings can be treated corr&pondlngly TTwe
symbols d/da(t) and §/5y(t) denote variational derivatives. Asa next step
we exploit the fact that thefictitiousfieIdSa .(¢) and y;(t) enter the identity
(2e.3)for the ntn points of time ¢, t; only. Without loss of generality
we may therefore simplify the time-dependent part I(a,y.t) of the
Liouvillian L(t) to
n+n’

Ny, )= 3 8t -1t) ]
n=1

2e4
IX:{a“S“X for t,=¢ (2e4)

7.XS, for t,=¢.
Then the variational derivatives in Eq. (2e.3) are replaced with partial
derivatives with respect to the parameters a, y.

K (t t/)_ 1 an+n’
e S GF day, 00, 00y 0y a7y, QD] e

a,y=0

In order to evaluate the correlation functions K, (t;, t)) we thus have to
first calculate the generating functiona o(x, y, t) which is the density
operator of € in the presence of thefictitious fields«;(¢) and y,(¢). We can
determine o(«, 7,t) by solving the Zwanzig-Nakajima equation (2c¢.3)
with the tlmedependent Liouvillian (2e.1). By accounting for the specia

2 The time ordering operators T(T") arrange operators from left to right (right to left)
according to increasing time arguments.
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structure (2c.4) o I(x, y,t) the equation o motion for the generating
functional may be written as, for ¢, <t <t,, 1

t
o y.)= —iLgeo(@ .0+ [ de' K(t —1) oo, 7,8) + 1,(0). (2e6)
tu

In L and K(¢) thefictitious fields a, y don't occur. These quantities are
thus given by Egs. (2b.14). The inhomogeneities 1,(t), however, do
depend on the fictitious fields a, y and read
I (a -y t)=_itrngme_i(l _$)L('_’u)e_“ue_i(l_(B)L(tu_tu‘l)
“, ol )

reTihot g ile T -Bin(1 _ ) W(0)

t
—i Ildz’trmLeme“’“ TBLU e T THITBILEL T
0

eTHe ML (| — ) LB, (ot

t
i [ dt' trg Lege ™ TWEC e ik T ML L0 (2e.7)

ty

gmg I WLETO(1 — ) LBl 0

3
—i j‘ dt/trmLeme—i(l—w)L(:—:u)e—ilu
tu—l

e HImMLO O (1 — ) LR, 0(0,7:t)
and, for u=0,
L) =1(f)= —itrg Lege ™! "L (1 — F) W(0)

In bringing the Nakajima-Zwanzig equation (2c.3) to the form (2c.6)
we have used the time 'ordering prescription to arrange al operators
properly with ¢, <t,,,. We aso have carried out some time integrals
according to
ty+1

_[ dtlfz(tv+ 17 tv)L

ty
and
t,+0

[ lo,y,nyde=1,.
ty—0

Because of P(1 — R) = 0 and, by the definition of [, PI, =1, R, we have
replaced (1-P)!, by I, everywhere. It is interesting to note that the
inhomogeneity I,(r) contains the generating functional e(x,y,t) for
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preceding time intervals, i.e. for t <¢,. These terms may be looked upon
as being determined by solving Eqg. (2e.6)for the preceding timeintervals.

As indicated explicitly, Eq. (2¢.6) governs the behavior o the
generating functiona between the "jumps” at the timest, and ¢, ,. At
these times g(«, ¥, t) changes discontinuously according to the 6-functions
inl(a, v, t). It isimportant to realizethat we need to know the magnitudes
o thejumps of g(a, v, t) to first order in the parameters a,, y, only. Higher
order terms do not contribute to the correlation functions K, (t;, ;)
as is seen from Eq. (2e.5). To first order, the jump is determined by the
first term in the right member of Eq. (2¢.3), namely by

Lege(t) = Lege + 12, 7, 1)
By using Eq. (2e.4) we find
ol 7, t,+0)=(1 —il)) o(x, 7,2, — 0). (2¢.8)

The problem formulated by Egs. (2e.6) and (2e.8) is to integrate (2e.6)
stepwise from jump to jump accounting for a new initial condition (2e.8)
ateacht,. This program can becarried out formally using the timeevolu-
tion operator V(¢) defined in (2b.17). For t>1, we obtain

1
o, 7, )=V(t—t) ol y,t,+0)+ [ dr' V(e —1) L(t)
tu

t (2e.9)
=V(t-t) (1-il) el t,—0F fdt' V(t—t) L().
|73
By putting together the solutions for all preceding time intervals we
finally get

oy, )=V(Et—t)A =il )V, —t,_)(1—=il,_,)...V(t,—1y)
(L=ily) V(t,) o(0)
TVE—t) A—il) V=t ) (L=il, ). V(e — 1)
.(1- ill)tjl de' Ve, —t) I(t)
(0]

TV —t)(1=il) V(t,—t, V(A —il,_ ). V(ts—1t))

J(1=ily) j At Vie, —t) () (2e.10)
+ 1
+ V(e —t)(1—il) i de Ve, — ) 1,_(t)

+ ; dt' v —t) L().

tu
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Thisexpression is nat yet lully explicit since, as mentioned above, the
inhomogeneities (¢} contain g(e, y.1) of preceding time intervals. We
refrain, however, from writing down the fully explicit expression asits
length makes it even less enlightening than the one given above.
In discussing (2e. 10) we remark that the first term occuring on the right
hand side is distinguished fromall the others. It would be the aly one
to appear in the trivial special case of NO interaction between & and B
snce, according to Eq. (2¢.7), al L) vanish identically for Lyg=0.
Then the time evolution operator V(r) of course degenerates to the
unitary operator exp( =i Lg1). There is another special case in which all
the £,(¢) vanish ar rather are negligible. namely if @ undergoes a Marko-
vian motion under the influence of B [16]. We shall show this below.

It isnow a straightforward matter to carry out the prescription {2¢.5)
on g(x, 7.1 as given by (2e.10) and to write down the expression for the
correlation function K, (. 7}). We will not do that for the general
K, .1, 1) since the resulling formula is kngthy and will hardly ever be
needed. Let us rather illustrate the stepsto be taken for the important
special case of equilibriumcorrelation functions. In equilibrium we have

LW(»=0
and (2e.11)

o=V et0) T j dr' Ve — 1) Io(t) = gl0) .

For the simples! two-times correlation function we then obtain. lor
t,—1,20,
(12

1
St 810D =—35 5 T trg @l 7. 1)
(—i)°* éa,da,

2,7=0

a? iz
= A m “e{'z Vie,—1) 100 + 1 ) dr' Vi, —1) Il(f’}}
ralazl t 2y=0
i : (2¢.12)
= lreSI 4 "2 — fll Slg{O)

| drugS, Vi, —1, — ) trgLgge ™™ RS (1 — ) W(0).
0

Correspondingly. again for 1, —r, 2 0,

<2

K
{8ty Syt = — trg oo 7. 1)
‘ I"‘ T 2.7=0
=trg S, Vi, —1,)0(0) S, (2e.13)

=

| drtegS, Vit —t, — ) trg Lage " P (1 - B) W(0) S,
0
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As a last example we consider the four-time corréation function
{(Sy17) So(15) Syt ) Si(e,))

‘:14
= g e(a 7
8a,3a,3y,-07, s0(x7.1)

(2e.14)

a.y=0

where ¢, 21}, £, =1,. Since such correlation functions with " pyramidal”
time order are encountered in quantum optics mainly we evaluate
(2e.14) lor the special case of the so called intensity correlation function
for a mode of an electromagnetic field

<bH (D) bY(t + 1) it + 1) b(1)) = trg [V (1) bo(0) b'] b
(2e.15)

—i[dUtrab[V(t—1) trg Lage 1 "L (1 — R) W(0) '] b
0

Here b and &' are the annihilation and creation operator d photons
in the fidd mode & considered The surrounding B of the field mode is,
for a lasér, constituted by activeatomsand pump and loss mechanisms.

In case of need other correlation functions can be constructed anal-
ogously. The resulting expressions become rather lengthy for n+n’
increasng. However, in theabove-mentioned special case of a Markovian
motion of & even the general formula for K, (1, ;) is easly written
down and has a rather compact appearance. TO see the simplifications
then possible we first discuss the behavior d the time evolution oper ator
() which obeys the equation of motion (2b.17).

. t
Vih= —iLg V() + [dUK(t =) V(1)
0

As already discussed in subsection 2b - following Eq. (2b.18) - the time
dependence of the integral kernel is determined by that of unperturbed
correlation functions of observables d 8. Now it 8 is a large system
with internal relaxation ti me zg very short compared to the relaxation
[ings =4 of & (i.e. of V (1)), we can, for timest® 1 neglect retardation
egfects in the equation d motion for V{r) and thus have

Vi)=AV(t) or V()=e™ (2e.16)
with

A= —iL g+ [ dtK().
0

By a similar argument one shows that the inhomogeneities L(2) in
Eq. (2e.7)are manifestations of memory effects and vanish in the Mar-
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kovian limit 7¢/74 = 0. Then we immediately find from Egs. (2e.5) and
(2e.10)

{S1(t1) $2(62) ... St Saltn) Sn-1(t—1) ... S2(82) S1 (1))
= tr@S" V(t" - t"_l) [S"_ 1 V(t"_ 1 —t"_z) (2617)
[Sa-2---S2V(t, =) [S1 V(1)) €(0) $11 53] S,- 2] 5,11 ..

This quite wellknown expression [16—-21] may be looked upon as a
generalized fluctuation-dissipation theorem, valid for quantum mechani-
cal Markov processes. It relates the mean irreversible motion of & — as
characterized by the time evol ution operator V(z) — to fluctuations in © —
as expressed by correlation functions of observables of 6.

Let us conclude with a few remarks on where and how the above
expressions for the correlation functions K, (t;,t) can be used. One
application is obvious. If for a given system the Nakajima-Zwanzig
equation is solved, that is if the time evolution operator V (¢) is known,
the above results allow an explicit evaluation o the K, (z;, t;). On the
other hand, the formal expressions for the K, can be used to construct
hierarchies of equations o motion for correlation functions or Green's
functions. Such hierarchies may be easier to solve than the Nakajima-
Zwanzig equation itself. We shall illustrate this use of the above results
in section 4 in our treatment of superconductivity.

¥
[y

3. Linear Damping Phenomena

3a) Introductory Remarks

We here want to illustrate the applicability d the Nakgima-Zwanzig
theory to damping phenomena in microscopic systemsas produced by a
weak coupling to large systems in thermal equilibrium. As already
stated in Section 1, the first such application was made by Argyresand
Kelley [8] inatreatment o spin relaxation. We will briefly review their
results in subsection 3¢. The main body of this section, subsection 3b,
will be concerned with an even simpler but no less important case, the
damped harmonic oscillator.

Linear damping phenomenacan be and have been treated by other
methods as well. Wangsness and Bloch [22] have treated spin relaxation
by constructing and solving a master equation for the density operator
o the spin system. Their investigation follows the lines suggested by
Pauli [1] and especially uses Pauli’s assumption of repeatedly random
phases which we havediscussed in Section 1. In thesame spirit the damped
harmonic oscillator has been dealt with by Weidlich and Haake [23].
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The advantage of the modern theory o damping phenomena using the
techniques of Nakajimaand Zwanzig over the older theories using Pauli's
method is twofold. First, the theoretically unsatisfying assumption of
repeatedly random phases can be avoided and second, more complicated
phenomena like non-Markovian damping effects, inaccessible to Pauli's
method, can be handled quite easily. — There is another way of dealing
with linear damping phenomena, first laid out by Senitzky [24] and later
generalized by Mori [25]. These authors describe the dynamics o the
opensystem & and the heat bath 8 in the Heisenberg picture. By eliminat-
ing the observables o 23 from the Heisenberg equations o motion for
the observables of €@ B quantum mechanical Langevin equations for
the observables of € are obtained. These methods will not be considered
in the present paper. We want to emphasize, however, that they are
equivalent to the Nakgima-Zwanzig method, just as Schrodinger
picture and Heisenberg picture are equivalent.

3b) The Damped Harmonic Oscillator

We consider an ideal oscillator & coupled to a heat bath 8. The heat
bath is required to have the following properties. (i) It is in thermal
equilibrium before the interaction with the oscillator is switched on.
(ii) It is a very large system with internal relaxation times 4 very short
compared to the relaxation time ¢ o the oscillator which is to be deter-
mined. (iii) It is sufficiently large and so weakly coupled to the oscillator
that its thermal equilibrium is never disturbed appreciably by the
oscillator. We shall first naively use and later discussin some more detail
these three conditions.
The Hamiltonian o the free oscillator is

Hs=hwb'b (3b.1)

where the (Bose) operators b and b' annihilate and create, respectively,
quanta o energy Aiw in the oscillator. The free heat bath Hamiltonian H,
need not be specified. The interaction Hamiltonian Hg, We choose as

Hey=hg(bB' T b'B) (3b.2)

with unspecified dimensionless heat bath operators B and Bf. The
coupling constant g has the dimension of a frequency. More general
couplings between & and 23 can and for some applications even have to
be considered [18].

The density operator ¢(t) of the oscillator obeys the Nakajima-
Zwanzig equation (2b.13). The reference state B, for the heat bath
occuring there can be taken, because of condition (iii) above, as the
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unperturbed canonical density operator
B, =¢ "lojtrge PHe. (3b.3)

Because of condition (ii) both the integral kernel K(t) and the inhomo-
geneity (1) in Eq. (2b.13) relax on a time scale 1 Which is much shorter
than the time scale 7 characteristic for the motion of ¢(t). We therefore
expect, for times > 1y, @ Markov approximation to the Nakajima-
Zwanzig equation to hold

o) = 4e()

B (3b.4)
A= —iLg—ittgLeg B, + | d1K(1).
V]

It is easy to see that the term trg Lggs B,.; iN A corresponds to a mean
conservative force exerted on the oscillator by the heat bath. Such an
effect is easily treated but of no interest in the present context. We
therefore assume this mean force to vanish. ie.

trg BB, =0. - (3b.5)

Finally, we take condition (iii) above to imply that third and higher
order contributions in g to the integral kernel K(t) can be neglected and
thus get

A= —iLg— [ dttrgLege 'tetle) LggBrer. (30b.6)
0 1y

Theevaluation of (3b.6) isasimple exercise. Theresulting master equation
for the oscillator reads
o) = ~ilw + 4) [b'b, 0(1)]
+x{[b,0()b"] + [bo(), b'T} (3b.7)
+ 2 [b, [o(0), b1].

The influence o the heat bath on the oscillator is characterized by the
three real parameters A, ti, and n. These are found as

ti+tiA =g° rjP deef ([ B(t), BHO)]>
° (3b.8)
k7i=g*Re | dte"(BY(0) B()),
0

where (---> =tr, ... B,,; and B(t)=¢€"5*B(0)e """ We see that the
parameters A, k, i aregiven as Fourier transforms of retarded equilibrium
Green's functions of the bath operators B and B*. the Fourier transforms
being evaluated at the eigenfrequency «w o the ideal oscillator. As a
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formal remark we note that «i and A, asfunctions o the"variable" w, are
related by a dispersion relation. Moreover, and more importantly, the
two Green's functions determining i and x n are related by the fluctuation
dissipation theorem [26]. As a consequence,

Hi=[efho— 1], (3b.9)

The physical meaning o the parameters x, A, and n becomes obvious
when equations o motion for the oscillator amplitude and the mean
number of quanta are extracted from Eq. (3b.7):

b)Y ={ —ilw+ 1) —x} (b))

: N (3b.10)
(b)) = — 2K {<b b)) — 71} .

We thus see that A isa frequency shift, k a damping constant, and 7 the
stationary number o quanta. According to Eq. (3b.9) the stationary
number of quanta is what we would expect for thermal equilibrium at
temperature 1/8. By observing that the stationary solution of the master
equation (3b.7)is®

§:e—ﬂhmb*b/treefﬂhmb’b (3b11)

we conclude that the heat bath imposes its thermal equilibrium at
temperature 1/8 on the oscillator.

The physical nature o the motion o the oscillator described by
Eq. (3b.7) is most obviously displayed when this equation is rewritten in
terms of Glauber's diagonal representation o o(t) with respect to
coherent states[11]

e()=[d*BP(B. B*. 1) |B> Bl with b|B>=pIf>. (3b.12)

Thisrepresentation allows the computation of normally ordered expecta-
tion values (b'"b™ as moments of the weight function P(8, *, t) as

b ey b()™y = [d2BB*"BmP(B, B*,1). (3b.13)
By using the wellknown commutation relations

[b,f(b,b"] =0 f (b,b")/ob
[f(b,b",b'1=0 1 (b,b"/d b

(3b.14)

3 Thisg}ﬁost easily verifiedin the representation in which the number operator ptp is
diagonal.
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the master equation (3b.7) is easily transformed into the following
differential equation of motion for the weight function P(8, 8*,t) [ 18]

e R e )

+K(@Z* P ) e

62
oprop

Thisisa Fokker Planck equation for a Gaussian Markov process [27].
It is known in the theory of classica random processes as the Fokker
Planck equation o the damped harmonic oscillator [28]. Its solution is
known as

P(B9 B*a [): deBOP(B’ B*,”Bo’ g) P(Bo, Bg’o)’ (3b16)

where P(B, f*, 0) is the initial P-function and P (g, B*, t|f,. f%) a “transi-
tion probability"

+2kn

} P, 1)

_ —(iotid+x)t)2
PR 1o B8) = [mi(1 — 9] exp{ = LB =

ﬁ(l _ e—ZKt)
(3b.17)

Let us now discuss the assumptionsi(ii) and (iii)stated at the beginning
of this subsection. They can both be formulated in a somewhat more
guantitative manner. First, the relevant time scale 1y for the motion of 23
isseen to begiven by the decay times of the equilibrium Green's functions
occuring in Egs. (3b.8). The time scale for the oscillator is k™%, ie. the
inverse damping constant. The validity of the Markov approximation
thus requires

Tgk <1. (3b.18)

Next, assumption (iii) has been used as a motivation to choose the
thermal equilibrium density operator (3b.3) as a reference state for the
heat bath 23 and to approximate the integral kernel K(t) to lowest order
in the coupling constant g (Born approximation). As a result, we have
seen the oscillator relax to the thermal equilibrium state (3b.11) at the
temperature 1/8 o the heat bath. In order to explicitly justify the Born
approximation we would have to estimate the contribution of all higher
order terms in K(f) to A in Eq. (3b.4). Such an estimation cannot be
carried out in general, that is unless a specific model for the heat bath is
considered. What we can do without specifying detailed properties of the
heat bath, however, isto perform a consistency check on our arguments.
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For the above treatment o the damped harmonic oscillator to be
meaningful the perturbation of the thermal equilibrium of the heat bath
caused by the coupling to the oscillator must be negligible. The state of
the heat bath is given by

os(t) = trg W(t) = trg{ PW () + (1 — B) W()}
=B, ttrge D1 — (p) W(0) (3b.19)

ref

itrg [dr'e 1 "PLI(1 — ) LB, ot 1) .
0

In evaluating the deviation from thermal equilibrium, gg(f) — B, We
have to make the same approximations used in determining the state o(t)
of the oscillator. The second term on the right hand side of Eq. (3b.19)
decays on a time scale i and may thus be neglected for t» 4. The third
term reads, to order g2,

Qﬂ(t) - Bref =—i _( dt(tree—i(LG*—LB)‘,LGEBrefQ(t - tl)
0

, (3b.20)
t t
— fdt [dt"trge et o) [oge i et e T Loy B, co(t — 1) .
0 0
Let us consider the diagonal matrix elements
AB,(1)=<{nlggln) — {n|B.glny with Hgln) =E,|n) (3b.21)

with respect to energy eigenstates. To these the first term in (3b.20) does
not contribute because o (3b.5). The contribution o the second term is
easily found, for t> 14, to read®

bth(0) —7n
AB0)= = <l Bl (0 (1 — =200 2O T

with (3b.22)
(n|B Inya, = g*Re | dee’ <(n|[B(t), B'(0)]in) .
0
For the Born approximation to make sense the relative deviation from
thermal equilibrium must be small, i.e.
ABn(t) _ lan| (1 _ 672)(!) <bT(0) b(0)> -n
(nBglny | & 1+7

In discussing this condition we will restrict ourselves to a few remarks.
First, we see that the initial excitation (b'(0) b(0)> of the oscillator must

<1. (3b.23)

* To avoid irrelevant complications we here assume (n [BB|n) =0.
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not be too high. Moreover, the coupling of S and B must be such that
o)/ <€ 1. To appreciate thislet uswrite down o, in the Hg-representation.

4, =, =,

o, =nhg?Y 8(hw + E, — E,) |{n|Bjm|? (3b.24)

o, =ef**nhg?y dthw +E,—E,) Km|Bln)>|?.

By comparison of (3b.22) with (3b.8) we also find
Y (n[Bregnd op = {n|Bind an = wc(l —e~Fr) 71 (3b.25)

These expressions suggest to interpret the o, as transition rates between
bath states of energies E, and E,,. o, measures the rate of change of the
occupation probability of bath states with energy E, due to transitions
n+m to states with energy E,=E,*TAo. Likewise, &/ accounts for
transitionsm — n from states with energy E,,= E, — Ao. We may thus say
that the smallness of «,/x implies that none of the contributions
{n|B.|n) a, to the damping constant k exhaust their sum. For more
detailed conclusions we refer to [29].

3¢) Spin Relaxation

The discussion of spin relaxation is precisely analogous to that of the
damped oscillator given above. Therefore and since the literature
abounds of detailed presentations of spin relaxation theory [8, 22, 30] we
here merely write down what we will need in Section 6, namely the
master equation for a damped spin-{ system. It reads, if both the Markov
and the Born approximations are made and with the energy shifts A
oppressed,

o(t)= —(i/h) [He. 0(1)]

+2710{57. 005" 1+ [s ™ 0(0), s 1} Gel)
+ 3700 {5 0 s ™1+ [5" 0(0), 571} '
+3n{[s*, o) 5] + [° (1), T} .

The spin operators obey the commutation relations

[s°,s*]=+s*, [s'.s ]=2¢
J Ls7s ]=2s (3c.2)

()?=("P=0 ()?=4.

The physical meaning of the transition ratesyo. 7o1, and » becomes clear
when equations of motion for the expectation values (s') and {(s*> are
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extracted from (3c.l). They are related to the transverse and longitudinal
decay times T, and T, respectively and the equilibrium z-component
of the spin by

T, =y, =310+ 701 +1)
T, ! =71 =V1ot 701 (3¢.3)
0o =2¢5(t—=0)> =10+ 700/ (701 —=710)» —1=0g=+1.

Because of the wellknown analogy of spin-3 systems and two-level atoms
the master equation (3c.I) also describes the behavior of a two-level atom
under the influence of a heat bath. Then the operator 2s* measures the
population difference for exited stateand ground state, whereass* and s~
are the raising and lowering operators, respectively. Eq. (3¢.1) may also
be fancied up to describe spontaneous emission of electromagnetic
radiation by an initially excited two-level atom [31]. In this case B is the
guantized electromagnetic field into which the atom dissipates its
excitation energy.

4. Superconductors
4a) Introductory Remarks

The present-day understanding of superconductivity was initiated by
two ideas. First, there was Frohlich's suggestion to hold the interaction
of conduction electrons and lattice vibrations responsible for the prop-
erties of superconducting metals [32]. The validity of this point was
clearly demonstrated by the discovery of the isotope effect [33, 34].
Then Cooper [35] realized that the Fermi sea which is the ground state
for free electrons is unstable with respect to formation of bound electron
pairs, if there is an attractive interaction between the electrons. The
BCS-theory [36] synthesized the two hints. Bardeen, Cooper and
Schrieffer showed that the electron-phonon interaction in a metal can
indeed produce an effective electron-electron attraction for electrons
with energies E in the interva Ef —hwp < E <Eg+hwp Where E¢
and wp are the Fermi energy and the Debye frequency, respectively.
Asa consequence, the superconducting ground stateisa pair condensate
with respect to these electrons. The lowest excited states, corresponding
to quasi-particles and quasi-holes in the modified Fermi sea, were then
found to be separated from the ground state by a finite energy gap A.
The BCS-theory has since proved togivean at least qualitatively satisfying
account of the thermodynamic, electromagnetic, and transport properties
o most superconducting materials [37,38]. Many of the quantitative
discrepancies between theory and experiment. as found especially for the
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socalled strong-coupling superconductors like Pb and Hg have been
eliminated by more sophisticated versions o the origina BCS-theory
[39]. Such sophistications mainly consist in a more detailed treatment
of the el ectron-phonon interaction which Bardeen, Cooper and Schrieffer
accounted for in terms of two parameters only, the Debye frequency oy,
and a coupling constant measuring the strength of the effective electron-
electron attraction. The ensuing generalizations of the BCS-theory,
obtained by Eliashberg [40] and Scalapino et a. [41] can be charac-
terized as follows. First, the effective attraction between electrons
produced by exchange o virtual phonons is a retarded interaction
rather than an instantaneous one. As a consequence, the gap-parameter A
assumes a time dependence or, equivalently, a frequency dependence,
A— A(w). This frequency dependence is closely related to the phonon
spectrum. Second, real phonons can be created and annihilated in the
course of electron collisions. This effect causes the elementary excitations
in the superconductor to have finite life times. Formally, the gap param-
eter becomes a complex number, A(a)):Al(a))+iA2(co). By measuring
thetunnel current from a superconductor toa normal conductor through
a thin insolating layer the complex frequency-dependant gap parameter
A(w) can be determined experimentally. Experiments on the strong-
coupling superconductors Pb and Hg have satisfyingly confirmed the
predictions of Scalapino et a. [41].

The following treatment o superconductivity does not present
anything physically new. It is meant a§ a demonstration of the applicabi-
lity of generalized-master-equation techniques to nontrivial many-body
problems. For this purpose it may suffice to consider a somewhat
simplified model Hamiltonian for the interacting electrons (6) and
phonons (23)

HGEHel = zgkc;—acka
ko '

Hy=Hy, =} w,blb,
9

_ . ; (4a.1)
HeﬁzHel»phz z gqck+q,ackc(bq+b—q)
kqo

= z c:+q,acka(pq'
kqo
Here ¢, and ¢,, create and annihilate, respectively, electrons with
spin a, wavevector k, and energy ¢,. The electron energiese, are measured
from the unperturbed Fermi level. The electron operators obey Fermi
commutation relations. The (Bose) operators b} and b, create and
annihilate, respectively, phonons with wave vector g and energy w, The
interaction is characterized by a coupling constant g,. A redistic theory
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would have to account for the Coulomb interaction in Hg, more than
one phonon branch in Hg, and a more general coupling g ..
We will calculate the following (retarded) Green's functions

G(kt)=i0(1) {Lexolt), cig (O] 4>
Fr(k)=i0(t) [cy (1), cuol0] >

where[...,...], denotes an anticornmutator and

(4a.2)

(-..) =trgtry,...e PHr try e ?H

The one-particle Green's function G(kt) contains al information about
the behavior o single electrons, that is, e.g., the quasiparticle excitation
spectrum. The anomalous Green's function or pair amplitude F*(kt)
vanishes identically for normal electron systems because of electron
number conservation. Its nonvanishing for superconductors siquals
that number conservation is broken because of pair condensation.
According to Yang [42] F* +0 implies off-diagonal long range order
in the electronic system.

The Heisenberg equations o motion for electron and phonon
operators imply equations o motion for G(k¢), F*(kt) and mixed
electron-phonon Green's functions of more complicated structure. If the
hierarchy of equations for all these Green's functionsis suitably organized
by usinga method developed by Martin and Schwinger [43], a systematic
perturbation expansion for G(kt) and F*(kt) can be generated. This
method was used in [40,41]. Our procedure will be based on first
eliminating the phonon degrees of freedom and then consider Nakajima-
Zwanzig-type equations o motion for electron Green's functions.

4b) The Electronsas an Open System

In order to generate equations o motion for the Green's functions
G(kt) and F*(kt) we express these quantities in the form (2e.12) and
(2e13

G(S1, 82, =10(1) <[S,(1), $,(0)].>

=i0(0) try S, V() [S1, 0”1, (4b.1)

+ @(t) }dtl trelS2 V(t - tl) trphLe,_Phg—i(l —B)Lr
0

Since we are considering a thermal equilibrium problem the initial
density operator W(0) o the composite system 6 (electrons) ® 2 (pho-
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nons) is taken as the canonical operator

W) =e P/t tr e PH. (4b.2)
The projection operator ‘B used to eliminate the phonon coordinates, is
P =B, tron (4b.3)

with the free canonical operator

B“’f — e'—ﬂHPh/trphegﬂHPh (4b4)
as the reference state for the phonons. The equation of motion (2b.17)
for the time evolution operator V(¢) can be smplified a bit because of
LphBrefzh_l[th’ Bref] =0 (4b5)
trph Lel—phBref =0.

We then have
V(ty=—iLy V(1)  (4b.6)

t
- f dt’ trphLel-phe_l(1 WL Lel-phBref V(t - t/) .
0

The integral kernel in this equation can be expanded in terms of the
coupling constant g, according to (2b.18). By an argument similar to
Migdal's [44] it is easily shown that such an expansion actually goes
in terms of the ratio (m/M)!/? of the electron massand the mass of anion
in the lattice. Since m/M <1 we can approximate the integral kernel in
lowest order (Born approximation) to get
V(t) - lLel V(t) (4b7)

t
- f dt’ trph Lel-phe_i(Lel +Lph)t, Lel»phBref V(t - tl) .
0

By differentiating (4b.l) with respect to time and using (4a.l) we find,
after some lengthy but trivial algebra, the following equations for G(k )
and F* (kt)

(% +isk> Glkt)—id(t)=i f dr Z%{.D‘“’(q )+ DM q 1)}
o q
ce et Gk, t — 1)
tifdt Y DOg.t)e a0 — 1)
0 kKo'q

. <[C; —q,a Cr' Ck-q,a(t - t/)’ Cl-:a(o)] +>

s e
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and (4b.8)
a t
(E - isk) Frkty= —i [dr' Y ${D'qr)— D' (q1)}
0 q
. C+i£"_th+(k, t)
t
—ifde Y DOg,v)etin-ar O —1)
0 k'a'q
: <[Ci-k+q, —acl:-'—q,a’ Ck’a’(t - tl)’ C;—a(O)]+> .
The influence of the phonons on the electrons expresses itself here in
terms of the unperturbed equilibrium phonon Green's functions
D(i)(q t) = l@(t) trph [(pq(t)s (p—q(o)]* Bref (4b9)
with
(pq(t) — ein,,t/h qoq(O) e—in,,t/h .
D) and D7) are related by the fluctuation-dissipation theorem [26].
Thefurther treatment of Eq. (4b.8) followsstandard lines. First, the two-

particle Green's functions occurring on the right hand sides are de-
coupled by a mean field ansatz

l@(t) <[Clj: -q,0’ Cro Ck-q,a(l)a Cl-:a(o)] + >

={0g,0n(k") = b4 05y n(k — q)} G(k1) (4b.10)
+ 5’(', —k+q5a, —af(k _q) F+(kt)
and

l@(t) <[Ctk+q, —acl:—'—q,ack’a’(t)’ Cl-:a(o)] +>
={04,0n (k) =04, _k+g0y, - nlk—q)} F* (k1)
8,40, ,Gk1).

This generalizes the Hartree-Fock approximation to include the pair
amplitude F*(kt). The equilibrium expectation values n(k) and f (k)
appearing in (4b.10) are related to the Fourier transforms of G(kt) and
F™(kt) by wellknown spectral theorems [26]

to 2dw
n(k) = <C:a Cka> = I W Im G(k, E)
e ade Erorio (4b.11)
fl)=<c2y sy = | WImFJf(k,E)
~ E=w+i0
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We will not discuss the limits of validity of the mean field approximation
(4b.10). We should mention, however, that for bulk superconductors
there is no experimental indication for the mean field theory to break
down [45]. Moreover, Boguolyubov [46] has shown that for a dightly
simplified model system the decoupling (4b.10) becomes exact in the
thermodynamic limit. By inserting (4b.10) in (4b.9) and Fourier trans-
forming with respect to time we get the following generalizations of
Gorkov's equations

[E—o.+Z _(k,E)] Gk, E)— ®_(k,EyF*(k,E)= —(1/2m)
~ @, (k,EYG(k,E)+[E+¢,—Z.(k,E)] F'(kE)=0
with
0, (K,E)=Y DNk -k, E£e)f(k)
&

(4b.12)

Ze(kB)=3 3Dk —Kk, E+ &) F Dk — K, E £ 5,)} (4b.13)
— DYk —K, E+e)nk)].

For the four renormalization amplitudes we find four coupled non-
linear integral equations by inserting in (4b.13) the spectral theorems
(4b.11):
&, (k,E)=—-Q2m) Y. D'k -k, E t¢)
<

+ m >
.| 20+e**)dw-Im-

" &, (K, 0t i0)

[o—¢& TZ_(KoTiO)][wote—Z, (KwTi0)]-0,(k.0wTi0)d_(K,o0ti0)
(4b.14)

and
Z(k,E)=3) {D' Uk —K,E+e)FD'(k—K, E+e)
<

+ o
+(2m)” IZD‘ (k—K,E+g,) | 2(1+¢*) 'dw-Im-

w+ e —Z (k' w+1i0)
[a) tw +Z_(K\o+i0][w+e,—Z, (k'\w+i0)]- D, (ko +i0)D_(k'\w+i0)
(4b.15)

We now explicitely see the generalizations obtained with respect to
the BCS-theory. If we suppress the renormalization of the single electron
energies g, ie. put Z, =0 and replace the phonon Green's function
Dk —k',E+g,) in (4b.14) by an effective coupling constant V.,
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Egs. (4b.12-15) reduce to the BCS-theory:
D, (k,E)— A4, = Z ka'f(k/)
&

E+sk

G B) - iy

(4b.16)
P B~ =Cn g
+m
-1 —pfory—1 Ak(
A= —(27) kZka, _jm2(1+e foy~1dw Im (Fi0)? — (2 +42)

The selfconsistency equations (4b.14) and (4b.15) which correspond to
the BCS gap equation are the same as those found in [41] except for the
fact that the more general and more realistic Hamiltonian considered
there entails some additional terms to appear in the selfconsistency
equations.

5. Superradiance

5a) Introductory Remarks

Ashas been known since the beginnings of quantum theory, spontaneous
emission of light is a quantum effect unexplicable in terms of classical
physics. Nonetheless, the classical picture of emitters radiating in phase
with each other can, under certain conditions, be used to understand
the properties of light pulses spontaneously generated by a system of
many excited atoms. If, for instance, Nidentical freeatoms are prepared,
at some instant o time, in an excited state of energy hw and if these
atoms occupy a volume with linear dimensions [ < A=2nc/w, then
spontaneous emission generates a light pulse with mean intensity
proportional to N2. By energy conservation the spectral width of such a
pulse is larger by a factor of the order N than the natural linewidth
observed for independently radiating atoms. Thiseffect wasfirst discussed
and termed superradiance by Dicke [47]. Dicke's 1954 paper has posed
and left open a number of questions only recently answered by severa
authors [48—60]. One of these open questions was whether super-
radiance would ever be observable since the condition /@A precludes
getting a sizable number of atoms involved. We will show here that
superradiance can be produced under much weaker and in fact realizable
conditions [53]. In order to get a quick survey over the physics of the
problem we will first present a semiclassical discussion before entering
the fully quantum-mechanical treatment.
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5b) Semiclassical Theory

The propagation o a light pulse with carrier frequency « through a
medium o identical two-level atoms with transition frequency w is
semiclassically described by Maxwell’s equations for the electric field
E(x,t) and quantum-mechanical equations o motion for the spatial
densities of the atomic variables polarization P(x,t) and inversion
D(x, t).

Our interest isin the specia case with respect to the duration ¢ o the
pulse

o l<t<T,T,, (5b.1)

where T, and T, are the relaxation times of inversion and polarization,
respectively. The left hand condition ensures that a carrier frequency
of the pulse can be defined. We have to pose the right hand condition,
since a superradiant pulse can be generated by in-phase cooperation
of al atoms only and since phase correlations between the atoms cannot
persist for timeslarger than the relaxation times T; and T,. In the specia
case (5b.l) we may use dowly varying field variables

E(x,t) = E*(x, ) = ei]/2rnho/V {b(x, 1) e~ 7% —bl(x, 1) gti@Tkay
P(x, )= P*(x,t) = —ei(/V) {S™(x, ) e 1@ 7¥P — §*(x, r) e @17k}

D(x,ty=D*(x, )=V~ 1 28%(x, t) (5b.2)
with ;

d/ot + an ) @  er om

{a/ax}{b,bt,s 87,8 <{CO/C} {b,b',87,57, 5% (5b.3)

There we have assumed the pulse to move into the positive x-direction
and that all quantities depend on one spatial variable x only. This
assumption will be justified later. Moreover, for simplicity we assume
linear polarization as indicated by the unit vector e. u is the component
o the atomic dipole moment in the direction e. The normalization of the
dimensionlessvariablesb, bt, and §* has been fixed in anticipation of the
quantum-mechanical meaning these quantities we will take on in the
next subsection. Since the volume V contains N atoms we have |57,
IS*| < N/2. The wellknown equations o motion mentioned above now
read [61-63]

a a
. . t —3 +
(6t +c 3 +K)b (x,t)=igS™(x,¢t)

% St(x,t)= —i2¢gb'(x, ) S*(x, 1)

%S’(x, ) =igib'(x 1) S~ (x, f) — b(x,£) S* (x, 1)
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with the coupling constant

g=ul/2nwhV. (5b.5)

For the sake o generality we have accounted for losses d the electro-
magnetic fidd measured by the field damping constant k. We may solve
Eqg. (5b.4)in terms of the ansatz

S7(x,)=8"(x,t)=3 N sinP(x, t)
$%(x, t)=3 N cosd(x, t) (5b.6)
bt(x, )= — b(x, 1) =(i/29) d(x, £}/ .

The quantity &(x,t) is usualy called Bloch angle. It characterizes the
state d the NdV/V atoms in a volume element dV at the point x and at
time t. It obeys the equation [64]

# e e Do pongs

(Wﬂ ) 0(x, 9= Ng? sina(x, 1 (5b.7)
The coefficient N g? appearing here can be expressed in terms of
measurable quantities as

NG =c/2, L=)2nclari’, o=NJV, y=@r*3)(u¥hi?), (5b.8)

where y is the natural linewidth o the atomic transition. The material
constant I, is called cooperation length [64]. Its physicadl meaning is
obvious from Eqg. (5b.7). It gives the scale o length on which &(x, t)
changes spatially due to the atom-field interaction. In order to describe
the superradiant behavior o the atomic medium we have to solve
Eq. (5b.7) with a suitable boundary condition at theend facesx =0, x =1
and with an appropriate initial condition @(x, 0) = @,(x). The smplest
initial condition is

D(x,0)=P,=const in 0=x=/. (5b.9)

Let us quickly ascertain under which conditions such an initial state
can be prepared experimentally. The common preparation technique
consistsin first bringing all atoms to the ground state and then sending
alaser pulseaong the axis of the sample. The (constant) amplitude b, and
the duration T of this pump pulse are chosen such that T </c and
&, =12gb, T|. The propagation of this pulse through the sample can be
described by Eq. (5b.7) with, in general, k =0. At time t=1/c after the
penetration o the pulse the sampleis left in a state characterized by the
Bloch angle ¢,(x). This can be independent o x only if

1<l (5b.10)
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since the spatial variation of @,4(x) is on a scale l.>. We require (5b.10)
and now use Eq. (5b.7) and the initial condition (5b.9) to study super-
radiant pulses. We specify the damping constant k as

k=l (5b.11)

This damping is meant to simulate the “losses” o field energy due to
the escape of light through the end faces of the sample. Note that //c is
just the time of flight of a photon through the sample [53]. Thisschematic
way of dealing with leakage effects, which we have taken over from laser
theory [61], saves us from having to account for complicated boundary
conditions at x=0 and x=1I. By using (5b.11) we may state the limit
(5b.10) in the alternative form

g)/Njx=1l/l.<1. (5b.12)

In this limit the Bloch angle ®(x, t) can be determined quite easily. To
obtain it we rewrite Eq. (5b.7) in terms of dimensionless variables

t/t=tg*N/x, x/E=xg*’N/ck (5b.13)
as
0 &* o*
& —sind= —(1%/1 ( + )qb. 5b.14)
%6/ N Ge7 * awm o/ (
To lowest order in 1%/I? the Bloch ar\wgle ¢ can thus be obtained from
d=1"'sind (5b.15)

and will not depend on the spatial variable x. Thisapproximate equation
for ¢ corresponds to an adiabatic elimination of the electric field b from

(5b.6) by

b=—igS /k. ' (5b.16)
We recognize Eq. (5b.15) as the equation of motion for an overdamped
pendulum. Its solution reads

h20 _ .

¢0
tan tanh — (5b.17)

2
This implies the following result for the radiated intensity
2khaob () b(f) =hwl, ST (t) S™(t) ‘
=hwl(N/2)? sech®[(t — t a0/ 7]

5 Let us remark that a spatially homogeneous complete inversion of the atomic
population (¢, =0) can in principle be realized without any restriction on the length / of
the sample, if an incoherent transverse excitation mechanism is used.

(5b.18)
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with 1, =2g¢%/x and
tmax = — 57 In tanh(®,/2)
=3t In[GN + S (Q)/(FN - S (0)].

The maximum intensity, reached at time t=t,,, iS proportional to N2
as is characteristic for a superradiant pulse. If all atoms are excited
initialy, ie. ®,=0 or $*(0)= T N/2, then the semiclassical theory
presented here gives the nonsensical result t..=oc. The pendulum
described by Eq. (5b.15) has an unstable equilibrium position at @ =0.
The semiclassical treatment can be valid only if the atoms display a
non-zero initial polarization S*(0)=[N?%/4 — $*(0)*]*/2. The quantum
mechanical theory to be given in the next subsection will not have this
drawback and will reveal the precise limit of validity of the semiclassical
theory with respect to the initial Bloch angle &,. In order to find the
physical meaning of the expressions |, =2g%k and 1=x«/g*N and to
justify our considering one spatial variable x only we specify the shape
of the active volume as that o a long thin cylinder with length ! and
diameter d such that

A<d<l. (5b.20)

For thiscase it isintuitively clear and may be shown by a more detailed
analysis [48, 52] that only that part of the radiation which goesinto the
small diffraction solid angle

AQ=2Yd* <1 5b.21
/

around the axis of the cylinder is enhanced by cooperative effects. Up to
corrections of order 1/N the whole initial atomic excitation energy is
radiated into the superradiant pulse travelling along the axis of the
sample. We then have

1/1=yNAQ/4n
hol, =hwyAQ/4r .

The linewidth 1/t of the superradiant pulse is thus seen to be the natural
linewidthy of theatomic transition enhanced by the factor Nand reduced
by the geometry factor 4Q/4n. Correspondingly, AwI, is the fraction
o the intensity of a single-atom emission going into the diffraction
solid angle 4Q.

Let us conclude by assembling the conditions for superradiance to
occur

s 5b.23
Lo =4m/Ty07 2 <1<l =1/ 2nc/oy A% . (5b.23)

(5b.19)

(5b.22)
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lbs 1S the wellknown absorption length occurring in Beer's law. The
difference to the case considered by Dicke [47] is obvious. Here the
linear dimensions o the active volume have to be large compared to the
wavelength A associated with the atomic transition. The requirement
lus <1, following from (§b.1), ensures the atomic decay to be dominated
by cooperative effects rather than by incoherent relaxation. The condi-
tion I €1, guarantees the pulse to be quasimonochromatic, i.e. propaga-
tion effects within the sample to be negligible. Let us note that the pulse
duration t cannot be made arbitrarily short by indefinitly increasing the
number o atoms N. We rather have

lrroyAilaclil<e/ll<d/izro. (5b.29)

5¢) SuperradianceM aster Equation

We consider the system specified by the conditions (5b.22). The complex
amplitudes b and " of the quasimonochromatic light field and the
atomic variables $* are now operators obeying the commutation rules

[o, b'1=1, [b b =[b, b]=0
[S* s*]=+8*, [S*,57]1=25".
The dynamics o the system is described by the equation o motion for
the density operator W(t) d the radiating atoms and the light field
W)= —iLW(), L=L4+Lg+Lag+idg. (5¢.2)

The three reversible parts o the Liouvillian L denote commutators with
the Hamiltonians

H,=how$?

H.=hwb'b (5¢.3)
H,p=hg(bS*+b*S7),
where g is the coupling constant given in (5b.5). The irreversible part A,
of the Liouvillian represents a fiedld damping accounting for leakage of

photons through the end faces d the active volume. It acts on some
operator X as

ArX =x{[b, Xb"*+[b X,b']}. (5¢4)

We recognize A, as the damping Liouvillian for a damped harmonic
oscillator moving under the influence o a zero temperature reservoir®.
For later use we note that (5c.4) implies

trbHpl edrt X — e~ U+ 1Kt g ptipl X (5¢.5)
6 Compare (3b.7) and (3b.9).

(5¢.1)
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This is easily proved by differentiating with respect to time and using
the commutation rules(5c.1). In the interaction picture Eqg. (5¢.2)simpli-
fies, because o the atoms being in resonance with the fidd mode, to

W)= —i(LFidg) W(). (5¢.6)

We will in the following exclusively work in the interaction picture and
may thus drop the tilde, W — W. The atom-field interaction and the fidd
damping are characterized, as in the semiclassica theory, by the time
scales l/g]/ﬁ and 1/x respectively. The order-of-magnitude relation
(5b.12) may be written as

O(L4p) = gl/ﬁ s OUR)=x, O(Lyp)/O(Ap)= ‘g‘@ =j,c- <1. (5¢7)

The ordes-of-magnitude estimate for the field damping Liouvillian,
O(Ap) =k, can be read of the definition (5¢.5). On the other hand, the
estimate O(L ) =g]/ N cannot be gained from just looking a H,; it is
intuitive, though, in view o the semiclassical treatment in the foregoing
subsection and can, moreover, be obtained by an analysis o the eigen-
value spectrum o H, [65, 66]. Scharf [65] has found that for N> 1 the
eigenvalues of H,r are nearly equidistant and separated by ~hg]/ﬁ.
As a consequence, expectation values o observables o the system will
in general display a quasiperiodicity with quasiperiod gl/ﬁ, if the state
o the system is a superposition or mixture d many eigenstateso H, .
The order-of-magnitude relation (5¢.7) implies, as in the semiclassical
theory that the fied will follow the motion o the atoms adiabatically.

Since we are interested in a spontaneous emission effect we want to
solve Eqg. (5¢.6) with the initial condition

W(0)=10><0I® ¢(0), (5¢.8)
where |0} is the photon vacuum, b|0> =0, and ¢(0) the initial value o
the atomic density operator

e()=tre W(1). (5¢.9)

We think o the atomic initial state as being prepared by the method
discussedin the preceding subsection, that isby meansd an intense short
laser pulse. If this pump pulse has a random phase and a fixed stable
amplitude, it generates an atomic state which has been shown by Boni-
facio, Haake, and Schwendimann [54] to be wdl approximated by

0(0)=|3N,m> (FN,m|
with
S*|zN,m) =m|;N,m)

5¢.10
S*UNm=[GNFm(ENtm+ 1)]"?|ZN,m+ 1). (5¢.10)
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The "angular momentum" quantum number m is related to the Bloch
angle ® by m =3 N cos® where 1 N cos® has to be rounded to the next-
lying integer.

In view o (5c.7)it is advantageous to adiabatically eliminate the field
coordinatesfrom Eq. (5¢.6)and to study the Nakajima-Zwanzig equation
for the atomic density operator o(t). T o this end we define the projector

P =10 <O trg. (5c.11)

Herewe have chosen theinitially present photon vacuum asthe reference
state for the field. Because of

PBLB=0, A0>0]|=0, (1-P)W(0)=0, PA=0 (5¢.12)
the Nakagjima-Zwanzig equation here reads

o(f)= — [dltrp L pe TAFTU=BLard 1 10} COfg(t — 1) (5¢.13)
0

Uptocorrections of higher order in I/I, we can approximate the integral
kernel in (5¢.13)in lowest order in L, By using (5¢.5) we thus obtain

t
o(t)= [dt'ke ™ Aot —1') (5¢.14)
/]

with the collective decay Liouvillian
AX=3{[S™,XS*]+[S™X,571}. (5¢.15)

The order of magnitude o A, can be found as
O(Ac)=0(_f dtLAFeAF’LAF> =¢g°’N fdte ™ =¢g°N/k=1/t. (5¢.16)
1] 0

This is just the inverse' pulse duration known from the semiclassica
treatment of the preceding subsection. Since we have x> 1/t we can
neglect retardation effects in (5¢.14) and so finally get the quantum
mechanical analog of the semiclassical equatiof (5b.15) for the Bloch
angle

o(t) = A.0(t) . (5¢.17)

Before proceeding to solve this superradiance master equation

[53, 547 let us first construct the analog of Eq. (5b.16) in order to see .

explicitly how the field follows the motion of the atoms adiabatically.
To this end we have to evaluate the expectation values (bi(t)' b(t)">
whichforl,l’=0, 1,2, ... specify the statistical properties of the radiation
fied.
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We use (2b.12) and obtain
(b(t) b(e)' > =trytr, BMB {BW( T (189 W(1)}

= i [dr'tr,trpbt B! A =BLarl [ 10% (0] g(t — 1)
0 (5¢.18)

© 1 t Sn s2
Y (=it fdr fds, f ds,_; ... | dsytrtrpbth!
n=0 0 0 0 0

) U(tl - Sn) DLAF U(sn —Sp- 1) QLAF U(sn—l - sn*Z)
- QLpU(sy) Lyp|0) {Olo(t —1).

Here we have immediately expanded the exponential
exp[Ar —i(1 — %) L]t in terms of L, and used the abbreviations
Ut)=expA, t and Q=1-"8 Because o O(U(t))=exp(-«1) and
O(L, p)= g]/I_V the above expansion goesin terms of the small parameter
g[/IT//K and may thus be truncated after the first nontrivial term. Thefirst
nonvanishing term in the series arises for n+ 1=+ This can be seen
asfollows. Let usdisregard, for the moment being, the factors U Q which
are irrelevant for the argument. By using the cyclic invariance of the
trace we let all n+ 1 factors L 5 in the n-th term of the series act to the
left. When bt'b" is thus (n+ 1) times commuted with H,; a polynomial
in b* and b is obtained. All monomials b**b’ in this polynomial are
characterized by (i+j)=(1+1) - (nt1) because of the commutation
relations [b, f(b,b"]=0f(b,b")/db". Now for (nt<(1+D), ie
(itj)>0, we havetr, bl 5/|0> (0] =0. We thus see that the term of order
n+1=1+/isthefirsttoproduceacontribution bt b’ withi = j =0 whose
vacuum expectation value does not vanish. By the same reasoning we
find that in the term of order nt1=1+ I we can replace the factors
Q=(1_-'%) with unity. The fidd expectation values <b* (¢t} b(t)"> are
now expressed as

Statr-1

t t 52
B by =(—)* fdr fdspoy f dsop... fdsy

0o 0 0 0
A trgb B U =Sy ) Lup USivr -1 —Sivr—2) Lar (5¢.19)
o LapU(sy —s1) LypU(sy) Lyrpl0> <Olo(t ~1t).

To evaluate this further we proceed step by step as follows. The first
damping propagator, U(t' —s, ;, —4) isreplaced with exp[ —«(t' —s;, ;. _,)]
because Of (5¢.5). The following commutator is made to act to the left as
(b, H,;]=g{—1S*b*'"*b" 1S~ b*'b"~'}. Then the next damp-
ing propagator, Uf(s;+,~y—S~ )~ ,gives way to exp[—«(s;+,",
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— 8,41 -2)]- Going on in this way we obtain

CUAGRIOW

=(—ig)™" (= D+ D) :fdt’e_(’“')"'/ tr,S*S Vo(t—1t) (5¢.20)
0

St+1-1

t 52
'jdsl+l’—1 j‘ ds;ep_g.. j‘ ds, etxGirr —i¥sicp-atotate)
4] 0 V]

The (1+1 — 1)-fold integral over the s; is elementary and leads to

B> =(—ig! (= 1 (1 +1) [dre @
: : ° , (5c21)
e =TI T e — Y ST (e —t)D

For timeslarge compared to the photon transient time, t> x !, retarda-
tion effects can be neglected so that we finaly get

BBy =l (STWISTMY,  u=—igk=—il/l)/N. (5¢22)

This is the quantum mechanical version of (5b.16). Field expectation
values can thus be evaluated as soon as the superradiance master
eguation (5c¢.17) for the atomic density operator is solved.

5d) Solution of the Superradiance Master Equation
a) Quasiprobability Distribution P(s, s, s, t)

The smplest and physically most transparent method of solving the
master equation (5¢.17) for the atomic density operator consists in first
transforming this equation into a partial differential equation for the
following quasiprobability distribution function [56, 58].

) + +
P(s,s,5, 0= | 7 (2 dn2n
Reé=—-o Imé==-w0 g=-ow
trAe—if‘(s‘_s*)e_in(sz..Sz)e_.ié(s_ S‘)Q(t) (Sd'l)

This definition associates the c-number variables s, s*, s* with the
operators S, S*, % such that expectation values o operators are given
by moments o the quasiprobability distribution function P as

(ST STF ST (OFS =tr, STISHS
OSSO =tr, S~¥o(1) (542)

+ + + o
= ] [ d2sds*s*!'s**s" P(s, s*, 5%, 1) .

Res=—-w Ims=-w sz=-w
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P(s,s*,s%,t) is rea but not necessarily positive. For a discussion of the
mathematical properties of quasiprobability distributions we refer to

[9-14].
A similar quasiprobability can be defined for the radiation field
+m +m
* = —i&(pr—bt _i&(f—b)
PF(ﬂ,B ,t) Reéé(—oo lméi—w(dzé/n) trpe grpe-bne-t QF(t)’ (5d3)

where gg(t) is the density operator for the field. Here c-number variables
are associated with operators such that

(b'(t)" b(0"> = [ d>BB*' B Pr(B, B*,1). (5d.4)

Pe(B, B*, 1) is the weight function in the diagonal representation o gg(t)
with respect to coherent states introduced by Glauber [11] which we
have already used in Section 3. In the present case P(f, f*,1) is related
to the quasiprobability distribution function P(s, s*,<?, t) for the atomic
variables by

|

[ > 1
Pe(B, B*, )= i _j' ds*P (I B’I’ B*, 5%, t) (5d.5)

This follows from the adiabatic correspondence law (5¢.22).

f) Equation of Motion for P(s, s*, 5%, )

In view of atheorem proved by Haken [15] it must be possibleto convert
the superradiance master equation (5c.17) to a differential equation of
motion for the quasi probability P(s, s*, &, t) because the st of operators
S*, S7, & is closed with respect to commutations. To construct this
equation we differentiate (5d.1) with respect to time and insert ¢ = A, ¢.
Then we use the identities

ST =S (i %St - 2i¢* ST+ 87)
eiéS gt = { —(if)ZS_ — IS+ S+} ei¢s”
S— einS‘ — eiv,S’SA ein
ginS* gt — gt ginStein
which follow from the commutation relations (5c.l) and the following
differentia relations

(5d.6)

. é .
+ e St isSt
STe aiee e
e 0 e
—aldST _ iZS
S”e aic e (5d.7)
Sz einS’ — 6 einSz .
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We thus get

4 z z a z

P(s,s*,s ’t)=11{— a5 S S T s e s (5d.8)
o2 o2 L . '

+%(63*2 s*% + ds? 52) +(1_ os° —e >} P %559

We may estimate the relative weight of the various terms in (5d.8) by
referring the variables t, s, s*, s to their respective scales

t-tft 1=x/g*N=2/I,N
$—>s*/(5N) becauseof [(S")|<N/2.

In this way we see that j-th order derivatives in (5d.8) have the weight
(2/NY~1. Up to corrections of order 1/N <1 the quasi-probability
P(s,s*, &, 1) therefore obeys the first order differential equation

(5d.9)

s* os 0s*

This equation allows for solutions depending on s* and the product ss*
only. As we will see below the initial quasiprobabilities relevant for
us obey

P(s,s*, 5%, t=0)=P(ss* s, t=0). (5d.11)

We can therefore determine the time-dependent quasiprobability from

0
P(s,s*.s‘,t):]l{— —a—s*sz— —a——ssz+ . ss*].P(s,s*,sz, t). (5d.10)

P(ss*, 5%, 1)=1, {—2

0 o
* * * oz
FRTRE s+ pleatl }P(Ss ,8,1) (5d.12)

y) Solution o the Initial Value Problem

The first-order differential equation (5d.12) can be solved using the
method of characteristics. The associated characteristic curves are
defined by the following set of ordinary differential equations

ds*

—dt_ = —IISS*

dss* .

—gp =25 ss? (5d.13)
dp

Thefirst two of these equations have a very intuitive physical meaning.
They are the trajectories o the classical variables S™(¢) S*(z) and S*(¢)
used in subsection (5b) as may be shown by using the ansatz
ss* =iN2sin?@ and s* =1 N cos® and comparing with (5b.15). The
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classical trajectories (5b.17) may be written as
s —V/(55)% + 505§ tanh(I, t]/(s5)° + 50 58)
1 — s5[(s5)* + 50581~ /2 tanh(I, t]/(s5)? + 505%)
(5d.14)

§ =5%(5y58, 55, 1) =

sos% sech?(l, t}/(s5)% F 5,55
[1—s30(s5)% +505%1~ 1/ tanh(l,£]/(s3)? + 505851

In thefollowingwe will also need the inversions of Egs. (5d.14)expressing
theinitial coordinatessj and s, s# in terms o the current valuesat timet

5 = spss*, . 1) = — VAP F s tanbly () 4 5%
OO T Ty ()2 4+ 55*] 712 tanh(, t)/(5)? + 55%)

(5d.15)
ss* sech?(l, t]/(s*)* + ss*)

T [ [(s)? +55*] 2 tanh(l t)/(s)2 + 559

SS* = 55*(5, 5§, 55, 1) =

5056 =5058(ss*, 5%, 1)

From the third of Egs. (5d.13) we find the quasiprobability

Sosa(ss*, 55, 1)

P(ss* 5%, 1) =
( ) ss*

P(sysk(ss*, 5%, 1), sh(ss*,5%,1),0). (5d.16)
We thus see that the quasiprobability drifts through the phase space of
its independent variables along the classical trajectories. The shape of P
does not change in time save for the occurrence of the kinematical factor
so88/ss*. The latter shows how the differential phase space volume
element changes along the trgjectories. Its presence guarantees that P
remains normalized to unity at al timesif it was so normalized initially.
The precise statement is

5053(55*, Sza t)

dsidsyst =
098050 ss*

ds* dss* . (5d.17)
It may be verified by evaluating the functional determinant for the
transformation of variables s}, sos§— %, ss* given in (5d.15).

Let us now use the result (5d.16) to find the expectation values
(ST S*(eF ST(1)"'y. With the help of the general expression (5d.2)
we get

(ST (1 s-()")

@ *m SoS&(ss*,s%,1)

S | dss* [ dsF(s"(ss*Y

o P(sos8(ss*,5%,t),55(s5%,5%,),0)

a0

o
=0 [ dsosd | dsf)[sz(sos?)‘qsf)’t)]k[55*(5053,56,f)]lP(SoS?)‘,Sf),O). (5d.18)
0
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In the second line we have transformed the integration variablesaccord-
ing to (5d.14) and used (5d.17). The expression obtained allows the
followingintuitiveinterpretation. Either the time-independent " random™
variables (s*) (s s*) are averaged with the time-dependent quasiprobabi-
lity distribution as a statistical weight or the time-dependent random
variables(s*(t)) (ss*(t)) are averaged with the initial quasiprobability as
statistical weight. The explicit evaluation o (5d.18) requiresthe specifica-
tion of the initial quasiprobability distribution.

6) Initial Quasiprobabilities
For our initia state (5¢.10) we have
GN,mSHS* ST EN, m>

{ GN+m!GN—-—m+!
=8,

-0 for I<iN
AN —m aN+m—p ™) =N +m

0 for I>iN+m.

(5d.19)

By expanding the exponential functions in the definition (5d.l) of the
quasiprobability we get the initial quasiprobability as
Ham (1) AN+m!IGN—m+1)!
P(ss*, s, 00= Y
- I IN-mI3AN -
=0 (z y m) {2 +m—1) (5d.20)
*
Fss*T d(ss*).
The expressions (5d.19) and (5d.20) simplify considerably in the limit
N> 1, since the ratios o factorials may be approximated by

(z+a)z!=z* for z»a. (5d.21)

8(s*+1—m)

The resulting asymptotic expressionslook somewhat different for strong
(3N -m<iN), medium (jm|<N/2), and wesk AN+ m«<iN) initial
atomic excitation. In the case o strong excitation (5d.20) becomes

O T

y! éss*}
=8(s* — 4N T ) (A/v) [ss*(N —v)]"(N —v) " 'exp[ —ss*/(N — ]

for 0<v=iN-m<iN.

Since P(ss*, <%, 0) factors with respect to the dependence on ss*
and & we may say that the random variables" ss* and s* are statistically
uncorrelated in this strong-excitation initial state. Let us note that v need
not be a small number of order unity for the asymptotic expression

P(ss*,s*,00=0(s" =N +v) Y (- 1)) (N —V) S(ss*)
1

(5d.22)
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(5d.22) to be valid. If N is say 10'? and if we are willing to accept an
accuracy of 1% for the moments ¢(S*'S~"> with 0< 1< 108 then we may
use Eq. (5d.22)for v up to ~ 10'°. For v that large P(ss*, . 0) develops
an extremely sharp maximum at ss* =v(N -V)=iN?-m2 Up to
corrections of order v/N (that is, in the above example, 1%) for the
moments we can then replace (5d.22) with

P(ss*,57,0)=5(s* —m) 8(ss* —4N*+m?) for L <v=4N—m<iN. (5d.23)
For medium initial excitation (5d.20) smplifies to

Snb GEN2—m?)'s(s* +1- m)—al
T dss*' S(ss*)  (5d.24)

P(ss*, &, 0)=)
1

for |m| < N/2.

This expression remains valid for |m| up to ~10'° in the above
numerical example. If |m| is large compared to unity thisformulasimpli-
fies further according to 8(s*+ 1 — m)— 6(s* — m) and then coincideswith
(5d.23). We thus see that the asymptotic expressions for strong and
medium initial excitation (5d.22)and (5d.24), respectively, have overlapp-
ing rangesd validity. Let usremark that P(ss*, s%, 0) according to(5d.24)
does not factor in separate distribution functions for its independent
variables. Theselatter are thus “statistically correlated random variables"
for medium excitation. It is aso interesting that this P(ss*,s%,0) is
sharply peaked near ss* =4 N? — n? in the following sense

+ o
P(ss*, t=0)= f ds* P(ss*, 5%, 0)

-y
l

')
= (N - m?) ési*' 6(ss*) (5d.25)

2
= d(ss* —iN?+m?

for |m| < N/2.

A similar formula for P in the case d wesk initial excitation is also
readily written down but is of no interest for our discussion o super-
radiance.

¢) Explicit Results

We are now equipped with theinitial quasiprobabilities and can therefore
explicitly evaluate the integrals (5d.18). We will write down the field
expectation values <b'(f)' b(z)"> which can be measured in photon
counting experiments [67]. By using the adiabatic correspondence
(5c.22)and Eq. (5d.18)wefind the theoretical predictionsfor <b*(¢) b(t)'>.
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In the case o medium initial excitation we use (5d.24) and get
(—1y

B BOD = Y —5— GN* —m?y
. o o (5d.26)
. 5) dsgsg [ss*(sosg, m—J, t)]lm 6(5053) »

where we have to insert the classica trgjectory (5d.14). The integral
occurring here collects its only important contributions near
sos¥~ N?/4—m?. For such values o s,s& the j-dependence of
ss*(sos§, m—j, 1) is negligible to within corrections o order 1/N. We
then get with the help o (5d.25)

b b)) =uf [ss*GN? — m?, m )T’
= [Iul? & N? sech?[(t = tmar)/7] (5d.27)
= (b))

with r,,, =4t In[AN +m)/AN — m)] for |m| < N/2.

Thisis precisaly the result (5b.18) of the semiclassical theory. We get
the same result for strong initial excitations, as is clear from (5d.23),
aslongasl1<v=N/2—m<N/2

Deviations from the completely classical behavior of superradiant
pulses, i.e., noticeable quantum fluctuations can only be expected for
very strong initial excitations, ie.iv=3N—-m=0(1). By replacing
N —v by N in (5d.22) we get for this'case

(BY(Y) (&) =u|?' | dsos(1/v!) (sos/N) N~ e~ sV
0 (5d.28)
So5& sech(I t]/EN? +5,5%) !
—INGN? +5,5%) " V2 tanh (I t)/3N? +5053) |
Since the important contributionsto thisintegral arise from the interval
0<so5% S VN where sos% < N4 we may replace N¥4t s,s% by N%/4
in the arguments o the hyperbolic functions, again accepting an error

of order 1/N. By finally expressing the hyperbolic functionsin terms o
exponentials we obtain

R by = | T dsosE(1/v1) (so s&/N)* N~ 1 g~ sostiN
0 (5d.29)

Soske?'
1+ (sos3/N)e*/* |’

For large v this again reduces to the classica result (5d.27). We expect
the deviations of (5d.29) from the classica result (5d.27) to be most
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pronounced for v=0, since for this case d complete excitation of all
atoms the distribution function for the variable s,s¥ is broadest. This
special case has also been investigated by Degiorgio [55]. The present
expression (5d.29)isvalid for v ranging from zero up to valueswhere the
system behavesfully classically. In order to evaluate the magnitude of the
quantum fluctuations displayed by the superradiant pulse for initial
states with v=0, 1,2, 3, ... we fird rescale the variables by writing

z=Ne 2", s,s¥=N(y—2z2)

G by  @2e e -2
|#|21(N2/4)l = v! ,Edy yzl (R (5d30)

This shows that the number of atoms N enters as a scaling parameter
only, once N islarge. We compare the results of a numerical evaluation
o (5d.30) with the semiclassical results (5b.18) in Fig.1-3. Figure 1
presentsa plot of the"time" z, at which the pulse intensity goes through
its maximum versus the initial-excitation parameter v=4N -m. The
largest deviation from the semiclassica vaue zV=v/(1 —v/N)xv
appears for v=0, i.e. full initial excitation d all atoms. For v increasing
the relative deviation (z, — z{*)/z¢? approaches zero as 1/2v. In Fig.2
we show the relative deviation o the quantum-mechanically calculated
maximum intensity (=1, z=1z,) from the classica maximum intensity
> N/4

AI(v)y=1—(bi(t) b(OY/EN)?. (5d.31)
The maximumintensity isfound smaller than what the classical treatment
predicts. The relative deviation is 22%for v =0 and approaches 4/(v + 1)

z(v)
10 Al (V)

02 f\
5

01
1

i | |
v 1 5 10 v
Fig.1 Fig.2

Fig. 1. Times of maximum intensity, normalized as z = Ne~ 2/ for atomic initia states
§N, 4N —v). The dashed line gives the classical result zf"=v/(1 - v/N)~v according
to(5b. 19).

Fig. 2. Relative deviation of the maximum intensity from its classical value for atomic
initial states N, 4N —\. For v > 8 the curve approaches 1/(v + 1)
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Fig. 3. Quadratic fluctuation of the intensity for atomic initial states |3 N,4N —v),
evaluated for the times z, of maximum intensity. For v > 10 the curve approaches 1/9v?

for vincreasing. Finally, in Fig. 3 we gjve the quadratic fluctuation of the
intensity evaluated for the time z, of maximum intensity

_ <o bT 0 b b)) = BT b | (5d.32)
() b)Y _—

For v=0 we have ¢(0) ~0.09. The pulse displays large quantum fluctua-
tions. These fluctuations rapidly decrease with v increasing, o(v) ap-
proaching 1/9v2.

As a conclusion we may thus say that superradiant pulses behave
practically classically for nearly al atomic initial states |3 N, m) if the
number of atoms N is large. An exception is made by the most highly
excited initial states with v=4N —m=0(1) only, for which the pulses
display large quantum fluctuations. For N —0 the domain 0 <v < O(1)
o these exceptional initial states becomes asymptotically small in
relative terms, O(1)/N —0. The exceptional behavior of the most highly

a(v)

excited atomic initial statesis easily understood qualitatively. For these .

states the pulses are triggered by elementary spontaneous-emission acts
which are uncorrelated with each other and may be considered quantum
noise. The pulses thus generated can be understood as amplified noise.
On the other hand. for initial states with v large, the atoms initially
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produce a nonzero transverse component of the Bloch vector,
[<ST(0) S~ (0)>1V2=[ (vt 1)(N =v)]"?> 1. Since the transverse com-
ponent of the Bloch vector measures the electric polarization of the
atomic medium, the pulses are in these cases triggered by a large
"classical" source rather than by noise and thus should behave nearly
classicaly asin fact they do.

6. TheLaser

6a) Introductory Remarks

Asiswdl known, in alaser stimulated emission of light by excited atoms
is used to generate selfsustained oscillations o the electromagnetic field.
To achieve this the active atoms have to be pumped continuously to
suitable excited states and the radiated field has to be fed back into the
atoms by means of mirrors. Laser theory has to account for the atom-
field interaction as well as the irreversible pump mechanism and field
losses by diffraction and leakage through the non-ideal mirrors. Several
formal techniques have been successfully employed to treat the dynamics
of a laser. Among these are Langevin equation methods, generalized
Fokker Planck equations, master equations, and Green's functions. For
an exhaustive presentation o the various equivalent laser theories we
refer to [61]. Here we briefly discuss a master equation treatment. For
the sake of simplicity we consider the simplest model of a laser consisting
of N identical two-level atoms in resonance with a single mode of the
electromagnetic field in the cavity. The atom-field density operator
W(t) obeys an equation of motion reading, in the interaction picture,

W)= —i(Lyp+idp+id) W(D). (6a.1)
The three parts of the Liouvillian refer to the atom-field interaction

(L4r), the pump and atomic losses(A,) and field losses (A). They have
al been used in the preceding sections of this paper in other contexts.

L X=h"'[H; X]. Hg=hgbST TS

N
=Ry Y. (bsy Th's))
v=1
A X =x{[b, Xb'1T[bX, bt} (6a.2)
N
AA: Z Av

v=1

A, X =370{ls7, X5, 1+ s X, s, T}
+ 3900 {[sy, X571+ 50 X, 5,1}
—dn{lss X1+ 5 X, 501} .
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H, is the interaction Hamiltonian aready used in our treatment of
superradiance. Ay is the Liouvillian for a damped harmonic oscillator
derived in Section 3. It describeshow the field modein the cavity would
dissipateany initial energy were it not coupled to the active atoms. Note
that we have dropped theterm proportional to 7 = (e?*“ - 1)~ ! occurring
in (3b.7).Thisis possiblesincefor frequenciesin the optical regionand for
temperatures at which lasersare usualy operated we havern < 1. Findly,
A, isthe atomic pump and loss Liouvillian(3¢.1). According to (3c.3)the
transition ratesy, o, Yo1. and x are related to the polarization and inversion
damping constants y, and y,, respectively and the unsaturated inversion
0, 8S

T, =y, =%(V01 +710+1)

Ty =y =%o01+ 710 (6a.3)
00=o1 = V10/(Yo1 +710)>» —1=0o=+1.

The Bose commutation relations for the field operators b and 4" and

the spin commutation relationsfor the atomic operatorss; (polarization)

and s, (inversion) are listed in (5e.l).

As discussed in Section 5¢ the Liouvillians L,y and Ar impose on
observables o the system the time rates of change g l/ﬁ and ti, respec-
tively. By the definition o A4, in the form

tryeMtX =tr X
tr sretAX= e mr, X . (6a.4)
trysie’ ' X =e Mir, s X+ (1-e M) daotr, X
we see that 4, introduces time rates of change d the order y, and v.
We thus have the important order-of-magnitude estimates

0(A) =7y, bl

O(Ap)=xk (6a.5)
O(L.))=g|/N.

Let us note that in our discussion o superradiance in Section 5¢ we have
solved Eg. (6al) in the limit O(A,) < O(L f) < O(Af). Here, however,
the light field is trapped in a near-ideal cavity so that we have O(Ay)
<0(4,),0(L,p). Moreover, for a typical gas laser Arecchi et a. [68]
givey, =y and g]/ﬁ/yl ~ 0.1. We thus have to solve Eq. (6a.l) in the
limit
K<gl/ﬁ<yl, ) - (6a.6)

This suggests to first try to eliminate the atomic variables from (6a.l)
and to consider a Nakajima-Zwanzig equation for the reduced density
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operator ¢(t) o the fidld mode. Because O(L ,f)/0(A )= 0.1 is smaller
than unity but not very small we cannot, in general, hope a low-order
approximation o the Nakgima-Zwanzig equation in terms of L,p
to be possible. It will turn out, however, that for the laser operating near
threshold such a low-order approximation is indeed valid. We will
treat this simple case only.

6b) Master Equation for the Field Density Operator

In order to eliminate the atomic variablesfrom (6a.l) we use the projector
P=Atr, (6b.1)
and use as the reference state B, =A for the atoms the unsaturated

atomic density operator

N
AA=0, A= ][ A4,, A,=31-0g)s; s +3(1+00)s) s, . (6b.2)

Wewill haveto demonstratelater that this choicefor the atomic reference
stateisa good one for alaser operating near threshold. We now consider
the Nakgjima-Zwanzig equation (2b.13)for

o) =tr, W(), (6b.3)
o(t)y= Ago(t) + } di' K)ot —t)+1(t). (6b.4)
Because of ’

tr(L,)?""'4=0, n=0,1,2,... (6b.5)

and since O(Ap) <0(A,) the expansion (2b.18) for the Laplace-
transformed integral kernel reads here

K@= 3 KO0 = Y (= I tr, Las[UG) (1 - B) Ly A
n=0 n=0

with

U(z)= ?dte‘”e"“ =(z—A)"". (6b.6)
(0]

A similar expansion obtains for the inhomogeneity I(t). For the further
evaluation o (6b.6)it is convenient to introduce the diagonal representa
tion of g(¢) with respect to coherent states

o(t)={d’BP(B, B*, 1) B> <Bl. bIf> =PI (6b.7)
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which we have already used in Sections 3 and 5. (6b.4) then becomes an
integrodifferential equation of motion for the quasiprobability P (8, 8*,1).
This equation has the same appearance as (6b.4) with ¢ — P and’

tr=x g B+ 25 )

5 (6b.8)
LAFng{B[S+ X1+B*S7. X1+ w7 aﬂ* Xst —aﬁs X}
Then the first two terms in the expansion (6b.6) read [70]
a 0*
K0 — 00 V|~ (o B+ o ot~
5ﬂ B 5ﬂ*5ﬂ +60)i
and 60.9)
0
K0 = @Ng*oofsn) g B + 55 F) B*Bo0)
4 a 6 4
+ NG+ ol (55 B+ 5 D) o0
2
V09D | e ool 09 00 (6510

— @y /N (1 +00) (2 +30) q)“"(t)}

e ris i )

58
{30508 — 2y N) (1)}

02 0
“oFap (aﬂ* 42 8+

{0 @) — (7.7 N) 9(0)}
@4
+agerage L0 o0 + Qom0 0}

Here we have approximated (N+1) by N. The time-dependence of
K@(t) and K(1) is determined by the " retardation functions”

(2)(t) =7, e Nt

o) =yl y /L -y e — {1+ @y, —yp)tt e ] (6b.11) .

PP =2y [e™ 27 ~ {1—-y,t} e ™.

7 This can be shown by writing Eq. (6b.4)in antinormal order with respect to band 4!
using [b. f(b, b’ Y]=2af(b,b")/éb' and then substituting b— g, b' - *, ¢— P [69].
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These functions are normalized so as to integrate up to unity,
{ dto()=1 We will come back to the higher order terms K2"*2)(r)

[e]

below. The first order derivative termsin K‘2(t) describe a linear drift
d the quasiprobability P(g, f*, t) towards higher amplitudes 18|, i.e.
a linear gain for the fidd amplitude. The amplification coefficient is

=Ng20'0/‘yl. (6b.12)

This amplification competes with the linear damping described by A,.
The laser can begin to produce selfsustained oscillations once the linear
gain outweighs the linear damping,

Ky,
Ng*~

This is the wellknown threshold condition [61]. The second-order-
derivative term in K@() has a diffuse effect on the quasiprobability
P(B, p*,1). That means physicaly, it describes noise. The diffusion
constant is

49=4Ng*(1+0y)/y. - (6b.14)

The first term in K™®(¢) represents a nonlinear damping force on the
field amplitude. Thisisa saturation effect preventing the fidd amplitude
from blowing up for a, > x and ensuring stable selfsustained oscillations
above treshold. The nonlinear-drift coefficient is

4Ng*o,

= 6b.15)
: ?i)’n (

(6b.13)

d,>K=>O’O>O',hr=

K

Let us now determine, by a selfconsistent argument, the equation o
motion for P(B, f*, t) near threshold, i.e. for the case

YRKS>0,2 0, =KV, /Ng*. (6b.16)

To this end we first assume, subject to later proof, that we can neglect
al K2"*2(¢) for n> 1, moreover all termsin K(t) except the first, the
inhomogeneity I(¢) and retardation effects. Then Eq. (6b.4) smplifiesto

P(B, B*, t)=AP(B B~

A= B*+ —— d )(K—a +a B*[f)+4¢pL
6ﬂ* op e op*ap -

Thisis a Fokker Planck equation first found by means o semiclassica

arguments and solved by Risken [70—-72]. In as much asit yieldsa valid
description o the laser it proves the field mode to behave like a noise-

(6b.17)
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driven van der Pol oscillator [73]. Its stationary solution is easily
verified to be

P(B,B*)=Z'exp[—3(I —a)*] (6b.18)
with

I=V/a,/xp*B

a= (=) (@) X/ Nyy/k(00—0)

1= {d*BP(B, p*.

This stationary distribution function and its moments

BBy = [d*B(B*B) P(B, B*) (6b.19)

give an excellent quantitative account of photon counting experiments
[74]. The time-dependent solution o the Fokker Planck equation has
been given by Risken and Vollmer [71] and Hampstead and Lax [72].
It allows the evaluation of multitime correlation functions o the field
operators b and b* with the help of our general expression (2e.17). Such
correlation functions have been measured in both interference-type
and photon-counting experiments and again, excellent agreement
between theory and experiments is found [75, 76].

Whileit is gratifying that the simple Fokker Planck equation (6b.17)
checks so wdl with experiments, the field mode thus behaving like a
noise-driven van der Pol oscillator, thisfact cannot be considered, from
a theoretical point of view, a judtification for the above-mentioned
approximationsleading from the general Nakajima-Zwanzig equation to
(6b.17). The justification can, however, be given as follows.

The stationary photon number at threshold (a, =a, =a=0)
followsfrom (6b.18) and (6b.19) as

B0 laco =V a/0u Y/ W)= )/ 7 N/ > 1. (6b.20)

The experimental result [74] is (bt b)|,-,~ 10*. For a laser operating
near threshold, (a — oy,)/0,,6 1, and for smal deviations from the
stationary regime [(bt b)|,-,]"* is a good scale for the field variables
B, B*. By introducing the normalized variables

B=B%/oulq, B*=p**/a/q, (6b.21)

we seethat al termsin the Fokker Planck differential operator A (60b.17)
have the same weight, whereas all neglected terms in K¥(t) are smaller
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to at least first order in the parameters %/«,,/q or %/a,/q g}/ N/7.- The
higher order contributions K***2(t) to the integral kernel turn out to
be small in the same sense.

We now have to demonstrate the validity o the Markov approxima:
tion made above. That is we have to show that P(f, f*, t) relaxesto the
stationary state (6b.18) much more dowly than the retardation functions
(6b.11) decay to zero. The rate of relaxation o the quasiprobability is
given by the eigenvalues of the Fokker Planck differential operator A.
These have been determined by Risken and Vollmer [71] by solving
the eigenvalue problem

Aanz —ynman
(6b.22)
ynmzo n=07i1, iz,
m=0,1,2,....
For al retardation effectsto be negligiblewe have to require
VYam < Y1 ‘yl| . (6b23)

By inspection of the results of [71] wefind that this condition is fulfilled
near threshold, i.e. for (a, — a,,,)/0m: <€ 1. Since the inhomogeneity ()
decays on the same time scale as the integral kernel we now also see
that we can indeed neglect it.

As a final check on the consistency o our arguments we should
show that the choice (6b.2)for the atomic reference state is a good one.
For this to be so A should be practically identical with the stationary
atomic density operator g,=9,(t— ). By using (2b.12) o, can be
evaluated in the same approximation (0(g*) and Markov) as the field
density operator. It is thus easily shown that g, has indeed the same
structure as A, namely

N
04=[]2,, 8,=3(1—-0)s, 57 +3(1+5)s;s, (6b.24)

#’
u=1

and that the deviation (¢,-—)/o, is small near threshold, i.e. for
(60— Ound/Oum: < 1.

Let us conclude this section with a fev qualitative remarks on the
laser operated far away from threshold. To treat this casein the frame-
work of the Nakajima-Zwanzig theory would require to retain terms o
all orders in the expansion (6b.6) d the integral kernel. Far above
threshold (a, »a,,) the quasiprobability obeys a generalized Fokker
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Planck equation [77]

P b 0= (g 0+ 25 )

+ j [( aﬁ* B*+ ﬁﬁ) D(ﬁ’ B*’ t/) 6 — Q(++)(B ﬁ* t) (6b25)

op*

b OB+ S 0| PR )

+ 1(),

5/37

since derivatives of higher order than the second assume an ever smaller
weight with the pump strength o, and thus the photon number (bt b)
increasing. The drift and diffusion coefficients contain contributions of
al orders in the coupling constant g. Far below threshold when only a
few photons are present all saturation effects are negligible but deriva
tivesof all orders with respect to the field variables have to be kept. We
refrain from treating these cases here quantitatively, since they are more
easily handled by other methods [78].

7. Dynamicsof Critical Fluctuationsin the Heisenberg
M agnet

5
7a) Introductory Remarks

It is known from experiments that the dynamical behavior of systems
near critical points is characterized by extremely large scales for both
the magnitude and thelifetimesd thefluctuations o certain observables.
Among these socalled critical observables are alwaysthe long-wavelength
Fourier components of the order parameter.

For the Heisenberg magnet we have as a complete set of microscopic
observables the wave-vector-dependant spin operators 57, («= z, +,-)
which obey the commutation relations

[S*z SwJ_r,]:iN~1/2S~+ g
[S;.8;1=2N"12§:

qtq

(Ta.1)

with N =number o spinsin the lattice.

The dynamics o these observables is governed by the Heisenberg
Hamiltonian

H_—th(q)(szsz +8782). (7a.2)
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J(q) is the exchange integral. For it we assume
J(x;—x;) = ZJ(‘I):O
q

Jig)=J(—4q).

Thecritical fluctuations of these spin variables have been investigated

recently by Resibois and de Leener [79], Resibois and Dewel [80], and
Kawasaki [81] with the following results. The decay time of the equi-
librium correlation function I,(1)= <S’ N2 2(0)> diverges at the
Curie point (T = T,) for ¢g—0 as |q| 52 to W|th|n a possible correction
n(n < 1) to the exponent. The decay of I',(t) is non-Markovian, that is
I,(t) displays damped oscillations. These r&ults imply that at T =71, the
conventional theory o critical slowing down {82, 83] is not valid. This
latter theory would predict a spin diffusion according to
fq(t)z - quFq(t). For 0 <|(T - T,)/T, <1, however, there is a spin
diffusion regime for wavevectors smaller than the inverse correlation
length, |q] < 1/¢(T). There the decay of I,(t) is monotonic on a scale
~lq7%
These results were obtained by Resibois et al. by an appropriately
renormalized perturbation expansion of I',(t). Kawasaki, on the other
hand, proposed a more widely applicabletheory. He put forward general
kinetic equations which are nonlinear stochastic equations o motion
(Langevin equations) for critical dynamical variables. These kinetic
eguations generalize the conventional linear damping equations by
including couplings between the Fourier components of the critica
variables. The validity of Kawasaki's approach is supported by the
following facts. (i) The kinetic equations imply the correctness o the
"dynamical scaling laws" {84] if the static equilibrium correlations o a
system in question obey the "static scaling laws" {85, 86]. There is a
wealth d experimental evidence for these scaling laws which the Kawa-
saki theory can thus claim as a back-up for itself, too. (ii) By accounting
for couplings between the critical variables Kawasaki's equations
incorporate the mode-mode-coupling theory of Kadanoff and Swift [87]
which has proved successful in explaining critical fluctuationsin liquid-
gas systems. (iii) Similar nonlinear Langevin equations have been
fruitfully employed in statistical treatments of turbulence [88, 89].
(iv) For the case o the isotropic Heisenberg magnet the solutions of
Kawasaki's equations reproduce the results of Resibois et al.

From a theoretical point o view Kawasaki's theory appears to be a
phenomenological one. In constructing it Kawasaki made a number of
assumptions which are unproven although partly plausible and backed
up by empirical evidence. Among these assumptions are the following.
(i) The critical dynamical variables move dowly compared to all other

(7a.3)
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variables of the system. (ii) The quantum mechanical operators represent-
ing the critical variables can be treated as c-numbers. (iii) Only quadratic
nonlinearities occur in the kinetic equations. (iv) Certain higher order
static correlation functions of the critical variables factor into products
of low-order correlation functions.

We herewant to show that Kawasaki's kinetic equationscan bederiv-
ed from the Liouville-van Neumann equation W (t)= — (i/A)[H, W (1)]
without recourse to the a-priori assumptions just mentioned. We will
do that for the Heisenberg magnet. Other systems can be treated anal-
ogously. Our procedure [90] will be based on associating c-number
variables with the spin operators S‘; in the sense of Section 2d and
writing the Liouville-van Neumann equation as a differential equation
of motion for a suitably defined quasiprobability distribution function.
We then separate the set of wave-vector-dependant spin variables in
long-wavelength and short-wavelength variables and show that only
the former undergo critical slowing down. The Nakgima-Zwanzig
equation for the reduced quasiprobability distribution over the low — |q|
variablesis found to be a Fokker Planck equation stochastically equiv-
alent to Kawasaki's Langevin equations.

7b) Master Equation for the Critical Dynamical Variables
a) Quasiprobability Distribution Furiction
We first define a quasiprobability distribution over dl spin variables
W &n0=3 [exp—iz {E@E(g) +&*(@)2*(9) +n(9)ig)}
q
F(E &, 1) (7b.1)
as the Fourier transform of the characteristic function
F(E &, 0=tcE@E) E@) EE*) W (1)
with
EQ=expi} &S,
4
E(m=expi Y 7i(q)$; (7b.2)
4
E*)=expi} &*(q)ST..
4
For each value of the wavevector q &(g) and &*(g) (and likewise £(q)

and £*(g)) are a pair of complex conjugate variables, whereas we choose
1(q) = n*(—q) (likewise#(g) = 7*(— q)). The multidimensional integration
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§ goes over the rea and imaginary parts of the variables &, &*,7 from
— o0 1o +

S J([T&*Eym) [@iton2m) T] dta)a). (7.3)

q+0
The wavevector sum and products cover the region
0<|q|< 1/a, a=lattice constant. (7b.4)

The quasi probability distribution function thus defined is real because of
(SHT=8%, and (§7)' =57, and has the moments
<S¢1| q2" S S;1S1212 Sz Sqls;z S+ (t)> (7b 5)
=3¢(qy)... £(q,) n(q) .- . n(gy) E*(— q1) ... E*(—qp) W(E, &%, 1) '
with
3= j(l_[ dzé(q)) (dn(O) I1 dzn(q)) .

q q%*0

Let us note that W (¢, £*, , t) is the many-spin analog of the single-spin
distribution function (5d.l) we have used in our discussion of super-
radiance.

p) Equation of Motion for W(&, &*, 1, t)

In order to construct the equation of motion for the quasiprobability
distribution we need the following identities which generalize (5d.6)
and (5d.7)

0

81 EEY =5z =g BEY
Az A e 0 A
SqE('I) = WE('I)

~ A~ oA ~ ~

STEQ=E® S +2N "2 T il E® S5y

] (7b.6)
_N—1 .y Nz " E £
zﬂté(q)té(q )—F(qﬁw,ﬂn) &
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By inserting these identities into
FE &7, 0= — (/M EE) E@ EE*) [H, W] (7b.7)

we first get a differential equation for the characteristic function F and
then, by Fourier transforming according to (7b.1), the desired equation
of motion for the quasiprobability distribution function,

W n )= —ILW( & n.0), (7b.8)
with the " Liouvillian"

L=-1I*
= Z J(g, 94— M(q)¢(q)¢*(q —q)

G
+2N"12 J(q’,q’—q){—T—é*(q')n(q’—q)—QC-}
E 0&*(q)
+N7' Y Jah e -
( A2
Y gV erqtq —q)- c} (7b.9)
(o) ST -0

@ 1 4
M@= Y oo VN 5

n q1492->qn

6"+1

>

" on(qy) on(qz)--. on(q,) on(a — a4, — 42 — 4.)
Jq,q)=J@)-J(q).

y) Low-|¢q| and High-|q| Variables

Let us now separate the set of spin variables {£, £*, n} in long-wavelength
and short-wavelength variables as follows

s.s*, 55 for |g/<Q, {sss}=C

* g 7blO
&ehn {S,S*,SZ for |gl=0Q, {(S,S%5)="%5 (7b10)

where Q is a wavevector cut-off to be fixed later. We now have to write
the quasiprobability P and the Liouvillian as

WL, E*n)=W(s s,5%S S,S,1)

(7b.11)
L(&, &%, ) = Lg(s, S*, ) T Ly(S, S*, 5t Leg(s, § 5% SS*, §7).
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The three parts of the Liouvillian read

_ [same structure as L(E, E* ), Eos, EXos*, n—»sz;|
©™ |g-summations restricted as 0< g/ < Q for dl s, ¥, &

same structure as L(, &*,n); =S, &*—5% 55
Ly = {g-summations restricted asQ < |q| < l/aforal S, S*, &

o min(2,v}
Leg= Y Y Io® (7b.12)
v=l un=0

same structure as L(¢, £*,n); in each term there are
v low-|¢q| variables u of which occur as factors and
(v — w) in derivatives whereas all other spin variables

I*» = { arehigh-|q| ones; g-summationsrestricted as0 < |g| < Q
for each low-|q| variable and as Q< |q] < 1/a for each
high-|q| variable.

Somewhat loosely speakingwemay call L, L, andL, theLiouvillians
referring to the free motion of the long-wavelength variables (L,), the
short-wavelength variables (Lg), and their interaction, respectively. It
turns out to be convenient for the following to further classify the terms
inL, L, andL, accordingto thenumber jof derivativesthey contain

Ls= Z Le
j=1
Ly= Y Ly, (7b.13)
ji=1
I — i L(jV.u)

Jj=max(1l,v—pg)

d) Orders of Magnitude and Time Scales

We assume that the spin system isin or nearly in thermal equilibrium at
T = T.. Then we have as natural scales for the magnitude of spinfluctua-
tions the thermal equilibrium expectation values

V<882 pr)/<SE8= >~ /kTylq). (7b.14)

Here x(q) is the wavevector-dependent static susceptibility which we
assume known. We may now estimate the relative weights of the various
terms in the Liouvillian by replacing the variables occurring as factors by
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I/ kT x(g) and derivatives by 1/)/kT x(g). We thus obtain
all|q|<Q
O(Lej) = Z
99 9192---49,-1
all Q< |q| < qmax
O(Ly) = y A(..)

49’ q192-.-4j-1

all Q@ = |gh<gmax dl <Q
D) = § $C i

qq’'qv+1gv+2---45-1 4142..-qv
all Q< |q| =gmax

A4, 9.91. 92, -, 94;-1)

oLy = > Y AL (7b.15)
qqvgv+1--qi-1 4'9192-- . qv~
all Q< |g| Sqmax

o) = y o y A(.)

qv-1qv---dj-1 99'91492.--9v-2
AC) = UNI YT "2J(q, 9

\/ (@) 2(4) ‘
X(‘h)X(‘Iz)---X(‘Ij—l) x9—q9' —4:—9,... —9q;- )

These expressions can be evaluated once the exchange integral J(gq, q')
and the static susceptibility are known. Since a rough estimate will serve
our purpose we use simple choices for these quantities. Molecular field
theory gives for x(g) at T= T, up to numerical factors of order unity,

¢
1y

N
S 7b.16
x(q) hid g’ ( )

where hJ is the exchange energy for nearest neighborsin the lattice. The
spherical continuum model for the lattice [91] givesfor J(q, Q)

J(g, q) =Ja? I G ) (7b.17)
1+a2q12 1+(12q2

By replacing g-sumsin (7b.15) with integrals as

Y- V@2em)?{d*q~Na*[d3q (7b.18)
q

and by suppressing numerical factors of order unity we obtain

O(Lg,, )/O(Lg)=(Q a)*/hJ/KT,

O(Lg,, )/O(Ly ) = O(L")/O(L™) =)/ hIKT,

O(Lg)/O(Lg) = (Qa)** %, O(L}*)/O(Ly) =(Qa)*”
O(L(jv, U)/O(Lm,«) — (Qa)4v— 2 , O(L(;‘Z))/O(ng) — (Qa)4v—6 .

(75.19)

3ewa A ORRIARH
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We now choose the wavevector cut-off to obey
Qa<l. (7b.20)

The second parameter entering the order-of-magnitude relations(7b.19),
|/hJ/k T, is the ratio of the exchange energy between nearest neighbors
in the lattice to the thermal energy at the Curie temperature. Molecular
field theory [92] yidlds this parameter as

hJ/KT,~[ZS(S+1)]"! (7b.21)

where Z is the number of nearest neighbors of a given spin in the lattice
and S the total spin quantum number for the individual spinsin the
lattice. Resibois et al. [79, 80] assumethis ratio to be small compared to
unity. We won't have to require this.

We may now draw the following conclusions. Because of (7b.20) we
candropderivativesd higher thanfirst order in the low-|q| Liouvillian L,

Ls=Lg, . (7b.22)

Thisisnot sofor Ly nor L,, unless]/AJ/k T, <1 which wedon't assume.
The interaction Liouvillian does simplify, however, according to
Leg=L*?+ "D+ 119 (7b.23)
Moreover, we see that

O(Lg) < O(Lgg) < O(Lyg) - (7b.24)

Since the Liouvillian has the dimension of an inverse time we may
consider (7b.24) as an order-of-magnitude relation for the time scales
characteristic for the processesdescribed by L, L, and L, The result
(7b.24) thus justifies our separation of the set of spin variables in low-jq|
and high-|q| subsets.

¢) Master Equation for the Reduced Quasiprobability over the Long-
Wavelength Variables

Since the long-wavelength variables move on time scales much larger
than the short-wavelength ones we can adiabatically eliminate the short-
wavelength variables from (7b.8). The reduced quasi probability over the
low-variables,

o(s, s*,5%,1)=3 W(s, s*,s, S S, 5,1)
with

Jg=] | ]l']Q d?S(q)d%s*(q) (7b.25)
qlz
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obeys the formally exact Nakgima-Zwanzig equation (2b.13). The
projector B used to eliminate the high-|q| variables has to be taken as

P = B, (S, $*, 5%) T . (7b.26)

We choose the reference state for the high-|q| variables as the thermal
equilibrium state

B, (S, S*, 57 = I W (s, s, 5%, S, §*, 5
with
Se=f( I1 d2s<q)) (dsZ«» I dst(q)) (7b.27)
O0=lql<Q 0<|ql<Q
and

W (s, s*, 57, S, S*, S‘)<—>V-AI; =e Pl e Pl

This is a reasonable reference state since the dowly moving long-wave-
length variables see the rapidly moving short-wavelength variables asin
thermal equilibrium. For the same reason a representative initial state
for the whole system to start out with at some arbitrary time will be the
local equilibrium state

W(s, s*, 5%, S, S, &, t=0)= (s, §*, 5, t=0) B,««(S, S, S). (7b.28)

This assigns an arbitrary initial distribution o(s, s*, &%, 0} to the low-|q|
variables but takes the high-|q| variables asin thermal equilibrium. The
Nakajima-Zwanzig equation for g(s, s*, &%, t) then describes the relaxation
o thelow-|q| variables to thermal equilibrium. Before writing down this
equation explicitly let usstate that the inhomogeneity I(t) occurring there
vanishes identically in the present case since we have

(1-PB) W(s,s",s,S5,5,0=0
because of (7b.26) and (7b.28). Furthermore, we have the identities
PLy=0
PLs=LsPB (7b.29)
‘B Lem‘B =0.

The first o these holds since 3z Ly X =0 by partial integration for
reasonable X (such that surface integrals vanish). The second identity
holds since the integration over the $* commutes with differentiations

with respect to the s Finally, ® Lgg P = 0 since al termsin Lgg cOntain-.

ing derivatives with respect to the §* vanish by partial integration and all
others by conservation of total spin and momentum. For instance,

3BSz(q) Bref = 5(‘1, 0) SBSz(q) Bref = O H
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since there is no high |q] variable with g=0. On the other hand,
YJ.q - (q)S'(q —q)* B, =0
-

because o J{g, q):O. We thus find the Nakajima-Zwanzig equation
(2b.13) to read here

f
0(s, s*, 55, t)= —iLgo(s, s*,5°. 1) — [ dt'IgLeg
0

. , 7b.30

'e_l(l_‘ml‘l (L6%+LE)BrefQ(S’ 3*7 Sz,t——t(). ( )
Thisis still exact. To within corrections of relative weight (Q a)* we may
insert (7b.22) and (7b.23) and, by appealing to (7b.24), replace the
exponential in the integral kernel with exp(—iLyt),and neglect retarda-
tion effects. We thus obtain

(s, s, 5%, ) =Aol(s, s* 57, 1) (7b.31)
with the differential operator
A=—iLg; — | diZg(L*? + LD+ [0 iter

0]

Bref

(LD + [(LD+ J(L0) (7b.32)

= —iLei— [dIIBLOOe (I + I0) By

Here we have accounted for the fact that al terms in > and &V
contain derivatives 8/08%*(q) D that Jg(L>?+ ['1)=0. Moreover,
by inserting the explicit expressions(7b.12)for the L*-* we see that L*?
does not contribute® at all to A which then turns out to be the following
Fokker-Planck differential operator

A= - iN‘”ZZJ 4 —q)

6 * N3 (g’ — _ 6 N oZ, _
b S~ 02 s - )|
F
{Y” +1A||(‘I)) @) s*(q)
F
+(y(g)—id.(q) 350 s*(q) (76.33)
d
+(n(q)+iAL(q))’as—(q—)s(q)

0? 0*
*42{ Vovgosi—g @ as*(q)@s(«n} '

8 Because of momentum conservation.
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We here have, in the first bracket, the reversible nonlinear drift terms
stemming from Lg; which describe a mode-mode coupling. The remain-
ing drift and diffusion terms are due to the dissipative influence of the
thermal equilibrium high-|q| spin fluctuations on the low-|q| variables.
They involve the complex damping constants and the diffusion constants.

(g + id(@=y(—q)—idy(—¢q)

=2N"'Y Jg.q -9 q)fdt%

99

. 0 0 }
. ’ % ' —ng! S " o__ S* " B,—e
S(q)S*(g' —q)e {——aS(q"+q) (¢") S —q) (4")( Bres

D,(q)=Dy(—q)=D*(q) (7b.34)
=ReN~' ¥ J(g.q -a)J(g"tq,q") dt3s
4'4" 0

-8(¢") S*(¢' — @) e~ '"*'S(q") S*(¢" — q) B,

Similar expressions are obtained for y, i A,, D,. For T> T, i.e. for the
paramagnetic state we have, by symmetry,

)’J.(Q)=?||(Q), AL(‘I)=A||(‘I), DL(‘I)=D||(‘I)~ (7b.35)

The y are damping constants, the A frequencies of periodic long-wave-
length spin excitations. These latter must not be confused with the usual
spin waves which occur below T, as Goldstone modes tied up with a
symmetry-breaking spontaneous magnetization. The A don't vanish
above T,. In order to find the relative weights of the varioustermsin the
Fokker Planck "Liouvillian™ A we again apply the scheme explained
in part 6 of this section

O(?j dtUl,O)e—iLEtUll))
0

o?n((lalnr:?r?;::grti)ft) = O(L = /N (Qay
3 °1) (7b.36)
(1,0),—iLgt y(1,0)
O(diffusion) O('i diL7-Te E ) — 1/N(Qa)®
O (nonlinear drift) O(Lg,) a '

Since (Qa) is small but finite we see that the weight of the linear drift

and diffusion terms in A is asymptotically small in the thermodynamic.

limit. At the Curie point, where our estimates are valid, the behavior
of the long-wavelength fluctuations is determined exclusively by the
nonlinear mode-mode coupling terms. However, the mode-mode-
coupling terms will loose their predominance for T away from the Curie
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temperature. This can be verified by using the temperature-dependent
susceptibility x(g) in the order-of-magnitude estimates carried out above.
We therefore expect the Fokker Planck equation (7b.31) to be valid in an
interpolative sense for (T — T,)/T,} < 1.

Because of

Jq,q4-q), 7@, A, D(g@—-0 for ¢-—-0 (7b.37)

the Fokker Planck equation ¢ = A implies as it must the conservation
of the total spin which is represented by the g = O-variables s*(0). Thisis
obvious from the fact that A does not contain derivatives d/0s*(0). The
total-spin variables s*(0) thus enter A as parameters only. Therefore the
Fokker Planck equation does not determine the dependence of ¢(s, s*,5%)
on the s¥0). It is thus consistent with (7b.31) and probably necessary
(to within the accuracy we are working with, (Qa)?) to take

o(s, s*, 5%, 1) = @o(s(0), s*(0), s*(0)) ¢ (s, s*, 5%, 1) (7b.38)

where g, (s(0), s*(0), s*(0))is the equilibrium distribution o the total-spin
variables and g(s, s*, 5% t) the time-dependent distribution of the g+ 0-
spin variables. The Iatter obeys a Fokker Planck equation ¢ = A¢ found
by integrating (7b.31) over the s*(0) and using (7b.38). The differential
operator A differs from A asgiven by (7b.33) in that the g-sums exclude
g=q and that spin-wave terms

s*(q)— 7b.39
sz(q)(a ) (9 as(q) (q)) (76.39)
appear where w(q) are the wellknown spin-wave frequencies

w(q)=2N""2J(0, q) | d*5(0) ds*(0) - 5*(0) 2o(s(0), s*(0), 5(0))

. (7b.40)
—2N"12J(0,9) <S5 .

It is easily checked that the Fokker Planck equation (7b.31) implies
detailed balance [93,94]. This has to be so since we have obtained
(7b.31) by eliminating irrelevant variables from the time-reversal-
invariant Liouville-von Neumann equation W(t)=(—i/h)[H, W (1)].
With the help of thisimportant property of our Fokker Planck equation
we easily find the stationary quasiprobability distribution to be a
Gaussian with respect to the gq+0-spin variables. The width of the
Gaussian turns out to be given by the moments

Ie5°(q) 5*(— ) 305, *, 5°) = <5282 > =Dy (q)/%,(9)

ala 7b.41
3e5(q) s*(q)2(s, 5*.5) =S ST D =D (9)/v.(q) ( :
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This relation between the diffusion and damping coefficients and equi-
librium expectation values can be read as a dissipation-fluctuation
theorem for the random process described by (7b.31).

The Fokker Planck equation (7b.31) is stochastically equivalent [27]
to Kawasaki's Langevin equations. Its time-dependent solution and the
corresponding spin correlation functions can be constructed by using a
perturbation scheme developed by Kawasaki [81] and made systematic
by Martin et a. [95]. We will not enter this problem here since our aim
was to put the Fokker-Planck equation (7b.31) and the equivalent
Langevin equations on a microscopic basis without recourse to any
a-priori assumptions.

It is a pleasure to acknowledge helpful conversations with T. Arecchi, R. Bonifacio,
V. Degiorgio, D. Forster, R. J. Glauber, R. Graham, H. Haken, B. Lix, P. C. Martin, N. E.
Rehler, H. Risken, P. Schwendimann, M. O. Scully, and W. Weidlich.
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