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R.  Graham: Statistical Theory of Instabilities in Stationary Nonequilibrium Systems 

A. General Part 

1. Introduction and General Survey 

The transition of a macroscopic system from a disordered, chaotic state 
to an ordered more regular state is a very general phenomenon as is 
testified by the abundance of highly ordered macroscopic systems in 
nature. These transitions are of special interest, if the change in order 
is structural, i.e. connected with a change in the symmetry of the system's 
state. 

The existence of such symmetry changing transitions raises two 
general theoretical questions. In the first place one wants to know the 
conditions under which the transitions occur. Secondly, the mechanisms 
which characterize them are of interest. 

Since the entropy of a system decreases, when its order is increased, 
it is clear from the second law of thermodynamics that transitions to 
states with higher ordering can only take place in open systems inter- 
acting with their environment. 

Two types of open systems are particularly simple. First, there are 
systems which are in thermal equilibrium with a large reservoir pre- 
scribing certain values for the intensive thermodynamic variables. Struc- 
tural changes of order in such systems take place as a consequence of 
an instability of all states with a certain given symmetry. They are known 
as second order phase transitions. Both the possibility of their occur- 
rence and their general mechanisms have been the subject of detailed 
studies for a long time. 

A second, simple class of open systems is formed by stationary non- 
equilibrium systems. They are in contact with several reservoirs, which 
are not in equilibrium among themselves. 

These reservoirs impose external forces and fluxes on the system 
and thus prevent it from reaching an equilibrium state. They rather 
keep it in a nonequilibrium state, which is stationary, if the properties 
of the various reservoirs are time independent. 

Structural changes of order in such systems again take place, if all 
states with a given symmetry become unstable. They were much less 
investigated in the past, and moved into the focus of interest only recently, 
although they occur quite frequently and give, in fact, the only clue to 
the problem of the self-organization of matter. The general conditions 
under which such instabilities occur where investigated by Glansdorff 
and Prigogine in recent publications [I - 43. A statistical foundation of 
their theory was recently given by Schlogl [ 5 ] .  The general picture, 
emerging from the results in [l - 41 may be summarized for our pur- 
poses as follows (cf. Fig. l): 

Fig. 1.  Two branches of stationary nonequilibrium states connected by an instability 
(see text) 

Starting with a system in a stable thermal equilibrium state (point 0 
in Fig. I), one may create a branch of stationary nonequilibrium states 
by applying an external force II  of increasing strength. If II  is sufficiently 
small one may linearize the relevant equations of motion with respect 
to the small deviations from equilibrium (region 1 in Fig. 1). In this 
region one finds that all stationary nonequilibrium states are stable 
if the thermal equilibrium state is stable. If 1 becomes sufficiently large, 
the linearization is no longer valid (region nl  in Fig. 1). In this case, it 
is possible that the branch (1) becomes unstable (dotted line in Fig. 1) 
for II  > A,, where I I ,  is some critical value, and a new branch (2) of states 
is followed by the system. This instability may lead to a change of the 
symmetry of the stable states. Assume that the states on branch (2) have 
a lower symmetry (i.e. higher order) than the states on branch (1). Since 
for L -= A, the lower symmetry of branch (2) degenerates to the higher 
symmetry of branch (I), the states of branch (2) merge continuously 
with the states of branch (1). 

A simple example is shown in Fig. 2. There, the system is viewed 
as a particle moving with friction in a potential @(w) with inversion 
symmetry @(w) = @(- w). The external force R is assumed to deform 
the potential without changing its symmetry. Three typical shapes for 
IIZ I I ,  are shown. The stationary states w" given by the minima of the 
potential, are plotted as a function of /. (broad line). For 1=1, the 
branch (1) of stationary states having inversion symmetry becomes un- 
stable and a new branch (2) of states, lacking inversion symmetry, is 
stable. 

There are many physically different systems, which show this general 
behaviour. A well known hydrodynamical example is furnished by the 
convective instability of a liquid layer heated from below (Benard in- 
stability). The spatial translation invariance in the liquid layer at rest is 
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Fig. 2. Stationary state ws (thick line) of a particle moving with friction in a ~otential  
@(w) with inversion symmetry, plotted as a function of an external force I 

broken by the formation of a regular lattice of convection cells in the 
convective state (cf. [4, 61). Other examples discussed in the literature 
are periodic oscillations of concentiktinns of certain substances in auto- 
catalytic reactions [4, 71 which also occur in biological systems, or 
periodic features in the dynamics of even more complex systems [41 
(e.g. Volterra cycles). 

While the Glansdorff-Prigogine theory predicts the occurrence of the 
instabilities, so far little work has been concerned with the general 
mechanisms of the transitions. In the present paper we want to address 
ourselves to this question. As in the case of phase transitions, the gene- 
ral mechanisms can best be analyzed by looking at the fluctuations 
near the basic instability, which were neglected completely so far. This 
is the subject of the first half (part A) of this paper. 

Experimentally, the fluctuations near the instabilities in the systems 
mentioned above have not yet been determined, although, in some 
cases (hydrodynamics) experiments seem to be possible and would be 
very interesting, indeed. Fortunately, however, a whole new class of 
instabilities has been discovered in optics within the last ten years, for 
which the fluctuations are more directly measurable than in the cases 
mentioned above. These are the instabilities which give rise to laser 
action [8] and induced light emission by the various scattering processes 
of nonlinear optics [9]. The fluctuations in optics are connected with 

the emitted light and can, hence, be measured directly by photon count- 
ing methods [lo]. 

More indirect methods like light scattering would have to be used 
in other cases. In part B the considerations of part A are applied to 
a number of optical instabilities. 

In order to put the optical instabilities into the general scheme 
outlined in Fig. 1, we look at a simple example. Let us consider an 
optical device, in which a stimulated scattering process takes place be- 
tween the mirrors of a Perot Fabry cavity, which emits light in a single 
mode pattern. An example would be a single mode laser or any other 
optical oscillator, like a Raman Stokes oscillator or a parametric oscil- 
lator. A diagram like Fig. 1 is obtained by plotting (besides other variables) 
the real part of the complex mode amplitude j3 versus the pump strength 
2, which is proportional to the intensity of the pumping source (Fig. 3a). 
Neglecting all fluctuations (as we did in Fig. I), the simple theory of 
such devices [11] gives the following general behavior. 

For very weak pumping the system may be described by equations, 
which are linearized with respect to the deviations from thermal equi- 

Fig. 3a. Real part of mode amplitude as a function of pump strength 1 (see text) 
b. Relaxation time of mode amplitude as a function of pump strength I 
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librium. The result for the amplitude of the oscillator mode is zero. 
Furthermore, one obtains some finite, constant value for the relaxation 
time z of the amplitude, which is plotted schematically in Fig. 3b. No 
instability, whatsoever, is possible in this linear domain, in agreement 
with the general result. 

With increased pumping, the nonlinearity of the interaction of light 
and matter has to be taken into account by linearizing around the 
stationary state, rather than around thermal equilibrium. The stationary 
solution for the complex amplitude of the oscillator mode is still zero. 
The deviations from thermal equilibrium are described by some other 
variables, which are not plotted in Fig. 3a (e.g. the occupation numbers 
of the atomic energy levels in the laser case). In contrast to the case of 
very weak pumping, the relaxation time of the mode amplitude now goes 
to infinity for some pumping strength A = A, indicating the onset of 
instability of this mode. For A > A, a new branch of states is found to 
be stable with non-zero mode amplitude and a finite relaxation time z. 
The zero-amplitude branch is unstable. 

The two different branches of states have different symmetries. All 
states on the zero-amplitude branch have a complete phase angle rota- 
tion invariance. The phase symmetry is broken on the finite-amplitude 
branch, since the complex mode amplitude has a fixed, though arbitrary, 
phase on this branch. The broken symmetry implies the existence of a 
long range order in space and (or) time. It should be noted, however, 
that this result is modified if fluctuhtions are taken into account. In 
summary, we find complete agreement with the general behaviour, out- 
lined in Fig. 1. In particular, the importance of the nonlinear interaction 
between light and matter is clearly born out. 

It is instructive to compare this phenomenological picture with the 
microscopic picture of the same instability. From the microscopic point 
of view the region 1 is the region where fluctuation processes alone 
are important (spontaneous emission). In the region nl stimulated 
emission becomes important. In fact, it is the same nonlinearity in the 
interaction of light and matter which gives rise to stimulated emission 
and the instability. The threshold is reached when it is more likely that 
a photon stimulates the emission of another photon, rather than if the 
photon is dissipated by other processes. 

This picture of the instability is much more general than the optical 
example, from which it was derived here. In fact, in as much as all macro- 
scopic instabilities have necessarily to be associated with boson modes 
because of their collective nature, we may always interpret the onset 
of instability as a taking over of the stimulated boson emission over 
the annihilation of the same bosons due to other processes. The stimula- 
ted emission process, responsible for the instability in this microscopic 
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picture, is due to the nonlinearity, which was found by Glansdorff and 
Prigogine to be necessary for the onset of instability. 

If the threshold of instability is passed, the number of bosons grows 
until a saturation effect due to induced absorption determines a final 
stationary state. In this state the coherent induced emission and re- 
absorption of bosons constitutes a long range order in space and (or) 
time. 

The degree to which this order is modified by fluctuations depends 
on the spatial dimensions of the system. For systems with short range 
interactions there exists no order of infinite range in less than two spatial 
dimensions [12]. Broken symmetries and long range order are found 
in such systems only if fluctuations are neglected. If the latter are in- 
cluded, the symmetry is always restored by a diffusion of the parameter, 
which characterizes the symmetry in question (the phase angle in the 
above example). This slow phase diffusion is a well known phenomenon 
for the single mode oscillator discussed before (cf [S]). The same pheno- 
menon is found in all optical examples, which are discussed in part B. 

Therefore, symmetry considerations also play an important role for 
those instabilities in which symmetry changes are finally restored by 
fluctuations. Furthermore, the fluctuations are frequently very weak and 
need a long time or distance to restore the full symmetry. Therefore, 
we find it useful to consider all these instabilities together from the 
common point of view, that they change the symmetry of the stationary 
state without fluctuations. They are called "symmetry changing transi- 
tions" in the following. 

We now give a brief outline of the material in this article. The paper 
is divided into two parts. The first part A is devoted to a general pheno- 
menclogical theory of fluctuations in the vicinity of a symmetry chan- 
ging instability. In the second part B the general results of part A are 
applied to a number of examples from laser physics and nonlinear 
optics. Throughout the whole paper we restrict ourselves to systems 
which are stationary, Markoffian and continuous. These basic assump- 
tions are introduced in section 2.1. The fundamental equations of motion 
can then be formulated along well known lines either as a Fokker- 
Planck equation (cf. 2.1.a) or as a set of Langevin equations (cf. 2.1.b). 
In this frame, the phenomenological quantities, which describe the 
system's motion are a set of drift and diffusion coefficients. They depend 
on the system's variables and a set of time independent parameters, 
which describe the external forces, acting on the system. All other 
quantities can, in principle, be derived from the drift and diffusion 
coefficients. However, in many cases it is preferable to use the stationary 
probability distribution as a phenomenological quantity, which is given, 
rather than derived from the drift and diffusion coefficients. This is a 



8 R. Graham: 

very common procedure in equilibrium theory, where the stationary 
distribution is always assumed to be known and taken to be the canonical 
distribution. For stationary nonequilibrium problems this procedure is 
unusual, although, as will be shown, it can have many advantages. It is 
an important part of our phenomenological approach. If the stationary 
distribution is known, it can be used to re-express the drift coefficients 
in a general way (cf. 2.2), which is a direct generalization of the familiar 
linear relations between fluxes and forces in irreversible thermodynamics 
[13], valid near equilibrium states. 

The formal connection with equilibrium theory is investigated further 
by generalizing the Onsager Machlup formulation of linear irreversible 
thermodynamics [14 - 161 to include also the nonlinear theory of sta- 
tionary states far from equilibrium (cf. 2.3). 

Since the knowledge of the stationary distribution is the starting 
point of our phenomenological theory, section 3 is devoted to a detailed 
study of its general properties. Special attention is paid to the relations 
between the theory which neglects fluctuations and the theory which 
includes fluctuations. 

In 3.1, we show, that without fluctuations, the system may be in a 
variety of different stable stationary states, whereas the inclusion of 
fluctuations leads to a unique and stable distribution over these states. 
This result is used in 3.2 to investigate the consequences of symmetry, 
which are particularly important in the vicinity of a symmetry changing 
instability, and can, in fact, be usedito determine the general form of 
the stationary distribution. The procedure is completely analogous to 
the Landau theory of second order phase transitions [17]. 

Having determined the stationary distribution, it is still not possible 
to reduce the dynamic theory of stationary nonequilibrium states to the 
equilibrium theory. In equilibrium theory there exists a general, unique 
connection between the stationary distribution and the dynamics of the 
system, since both are determined by the same Hamiltonian. This 
connection is lacking in the nonequilibrium theory. As is shown in 
2.2 the probability current in the stationary state has to be known in 
addition to the stationary distribution, in order to determine the dyna- 
mics. This difference from equilibrium theory is corroborated in 3.3 by 
looking at the generalization of the fluctuation dissipation theorem for 
stationary nonequilibrium states. As in equilibrium theory it is possible 
to express the linear response of the system in terms of a two-time 
correlation function. It is not possible, however, to calculate this correla- 
tion function and the stationary distribution from one Hamiltonian. 

In Section 4 systems with the property of detailed balance are con- 
sidered. In 4.2 and 4.3 it is shown, that, for such systems, there exists 
an analogy to thermal equilibrium states, with respect to their dynamic 
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behaviour. For such systems, a phenomenological approach can be 
used to determine the dynamics from the stationary distribution. In 
4.1 and 4.2 the conditions for the validity of detailed balance are examined. 
In particular, it is found, that a detailed balance condition holds in the 
vicinity of symmetry changing instabilities, when only a single mode is 
unstable. If several modes become unstable simultaneously, the presence 
of detailed balance depends on the existence of symmetries between 
these modes. 

In part B the general phenomenological theory is applied to various 
optical examples. Some common characteristics of these examples and 
an outline of the alternative microscopic theory of the optical instabilities 
is set forth in Section 5. 

Section 6 is devoted to various examples from laser theory. The 
laser presents an example of a system, which shows various instabilities 
in succession, each of which is connected with a new change in symmetry. 
In the Sections 6.1, 6.2, 6.3 we consider these transitions by means of 
the phenomenological theory. In Section 6.4 we consider as an example 
for a spatially extended system light propagation in a one dimensional 
laser medium. 

The fluctuations near the instability leading to single mode laser 
action have been investigated experimentally in great detail [lo, 181. 
The experimental results were found to be in complete agreement with 
the results obtained by a Fokker-Planck equation, which was derived 
from a microscopic, quantized theory [8, 191. In Section 6.1 we obtain 
from our phenomenological approach the same Fokker-Planck equation, 
and hence, all the experimentally confirmed results of the microscopic 
theory. The number of parameters which have to be determined by 
fitting the experimental results is the same, both, in the microscopic 
theory and in the phenomenological theory. 

In Section 7 the phenomenological theory is applied to the most 
important class of instabilities in nonlinear optics, i.e. those which are 
connected with second order parametric scattering. The special case of 
subharmonic generation (cf. 7.2) presents an example where the symmetry, 
which is changed at the instability, is discontinuous, as in the example 
in Fig. 2. In this case fluctuations lead to small oscillations around the 
stable state and to discrete jumps between the degenerate stable states. 
The continuous phase diffusion occurs only in the non-degenerate param- 
etric oscillator, treated in 7.1. 

In Section 8 higher order scattering processes and multimode effects 
are considered by combining the microscopic and the macroscopic 
approach. The microscopic theory is used to derive the drift and diffusion 
terms of the Fokker-Planck equation in 8.2. The macroscopic theory is 
used to identify the conditions for the validity of detailed balance in 8.1 and 
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to calculate the stationary distribution in 8.3, making use of the results 
of Section 4. The result, obtained in this way, is very general and makes 
it possible to discuss many special cases, some of which are considered 
in 8.4. 

Throughout part B we try to make contact with the microscopic 
theory of the various instabilities. This comparison gives in some cases 
an independent check of the results of the phenomenological theory. On 
the other hand, this comparison is also useful for a further understanding 
of the microscopic theory, since it shows clearly which phenomenona 
have a microscopic origin and which not. We expect, therefore, that 
a combination of both, the phenomenological and the microscopic 
theory, will prove to be most useful in the future. 

2. Continuous Markoff Systems 

A general framework for the description of open systems is obtained by 
making some general assumptions. In this paper, we are only interested 
in macroscopic systems, which can be described by a small number of 
macroscopic variables, changing slowly and continuously in time. There- 
fore, the natural frame for a dynamic description is furnished by a 
Fokker-Planck equation, which combines drift and diffusion in a natural 
way. For reviews of the properties of this equation see, e.g., [20, 211. 
Various equivalent formulations of the equations of motion are given 
in Sections 2.1 - 2.3. They allow us \to consider a stationary nonequi- 
librium system as a generalization of an equilibrium system from various 
points of view. This comparison with equilibrium theory is useful and 
necessary in order to construct a phenomenological theory. 

2.1. Basic Assumptions and Equations of Motion 

Let us consider a system whose macroscopic state is completely described 
by a set of n variables 

{w) = {wl, w2,. . . , Wi,. . . , W") . (2.1) 

Examples of such variables are: a set of mode amplitudes in optics, a 
set of concentrations in chemistry or a complete set of variables de- 
scribing the hydrodynamics of some given system. On a macroscopic 
level of description neglecting fluctuations, the variables {w} describe 
the state of the system. 

A more detailed description takes into account, that the variables 
{w) are, in general, fluctuating time dependent quantities. Thus, {w(t)) 
forms an n-dimensional random process. The physical origin of the 

fluctuations can be quite different for various systems. Fluctuations may 
be imposed on the system from the outside by random boundary con- 
ditions or they may reflect a lack of knowledge about the exact state of 
the system, either because of quantum uncertainties.(quantum noise) or 
because of the impossibility of handling a huge number of microscopic 
variables. 

The random process formed by {w(t)) may be characterized in the 
usual way by a set of probability densities 

This hierarchy of distributions, instead of the set of variables (2.1), 
describes a state of the system, if fluctuations are important. W, is the 
v-fold probability density for finding {w(t)): near {w'") at the time 
t = t l ,  near {w'~))  for t = t,, . . . ,near {w")) for t = t,. 

As a first fundamental assumption we introduce the Markoff property 
of the random process {w(t)), which is defined by the condition 

In (2.3) the conditional probability density P has been introduced, which 
only depends on the variables {w")), {w"- ')) and the two times t,, t,-, . 

From the Markoff assumption (2.3) it follows immediately that the 
whole hierarchy of distributions (2.2) is given, if W, and P are known. 
The condition (2.3) furthermore implies, that a Markoff process does 
not describe any memory of the system of states at times t < to if at 
some time t = to the system's state is specified by giving {w(to)). 

The physical content of the Markoff assumption is well known and 
may be summarized in the following way: It must be possible to separate 
the numerous variables, which give an exact microscopic description of 
the system, into two classes, according to their relaxation times. The 
first class, which is the set {w), must have much longer relaxation times 
than all the remaining variables, which form the second class. The time 
scale of description is then chosen to be intermediate to the long and the 
short relaxation times. Then, clearly, all memory effects are accounted 
for by the variables {w} and it is adequate to assume that they form a 
Markoff process. 
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As a consequence of Eq. (2.3) the probability density Wl obeys the 
equation 

which is obtained by integrating the expression for W,, following from 
Eq. (2.3), over {w'"}. 

A second fundamental assumption is the stationarity of the random 
process {w(t)}. This assumption implies, that all external influences on 
the system are time independent on the adopted time scale of description. 
It implies, furthermore, that the classification of the system's variables 
as slowly and rapidly varying quantities must be preserved during the 
evolution of the system. Owing to the assumption of stationarity the 
conditional distribution P in Eqs. (2.3), (2.4) depends only on the dif- 
ference of the two times of its argument. 

a) Fokker-Planck Equation 

We simplify Eq. (2.4) by using the stationarity assumption. ~urthermore, 
we write the integral Eq. (2.4) as a differential equation by taking z = t2 - t l  
to be small, expanding P in terms of the averaged powers of {w")- w'"}, 
and performing partial integrations. Eq. (2.4) then takes the form' 

where the coeficients K . . . are given by 

The angular brackets define the mean values of the enclosed quantities. 
The coeficients K.. . do not depend on t, due to the stationarity assump- 
tion'. The function P({w(')} / {w(')} ; T), whose expansion in terms of the 
moments (2.6) led to Eq. (2.5), is recovered from Eq. (2.5) as its Green's 
function solution obeying the initial condition 

Equations of the structure (2.5) are well known in many different 
fields of physics, where they were derived from microscopic descriptions. 

' Summation over repeated indices is always implied, if not noted otherwise. 
Note, that Eq. (2.5) with time dependent K . . .  holds even for non-Markoffian pro- 

cesses [20]. 

Most recently, perhaps, Eq. (2.5) has been derived in quantum optics 
for electromagnetic fields interacting with matter (cf. [8]). 

Owing to the appearance of derivatives of arbitrarily high order, 
Eq. (2.5) is in most cases too complicated to be solved in this form. In 
the following, we simplify Eq. (2.5) by dropping all derivatives of higher 
than the second order. Eq. (2.5) then acquires the basic structure of a 
Fokker-Planck equation. Mathematically speaking, the Markoff process 
Eq. (2.5) is reduced to a continuous Markoff process in this way. 

A physical basis for the truncation of Eq. (2.5) after the second 
order derivatives can often be found by looking at the dependence of 
the coeficients K . . . on the size of the system. To this end the variables 
{w} have to be rescaled in order to be independent of the system's size. 
If the fluctuations described by the coeficients K ... have their origin 
in microscopic, non-collective events, the coefficients of derivatives of 
subsequent orders in Eq. (2.5) decrease in order of magnitude by a factor 
increasing with the size of the system. 

As a zero order approximation we obtain from Eq. (2.5) 

This equation can easily be solved, if the solutions of its characteristic 
equations 

are known. Eq. (2.8) describes a drift of Wl in the {w}-space along the 
characteristic lines given by Eq. (2.9). In this drift approximation fluctu- 
ations are introduced only by the randomness, which is contained in 
the initial distribution. In order to describe a fluctuating motion of the 
system, we have to include the second order derivative terms in Eq. (2.5); 
this leads to the Fokker-Planck equation 

The second orderderivatives describeageneralized diffusion in {w}-space. 
The diffusion approximation (2.10) of Eq. (2.5) is adopted in all the 
following. 
From Eq. (2.6) the diffusion matrix Kik({w}) is obtained symmetric 
and non-negative. We also assume in the following that the inverse of 
K,, exists. Singular diffusion matrices can be treated as a limiting case. 

Eq. (2.10) has to be supplemented by a set of initial boundary con- 
ditions. The initial condition is given by the distribution Wl for a given 
time. The special choice (2.7) gives P as a solution of Eq. (2.10). As 
boundary conditions we may specify Wl and its first order derivatives 
at the boundaries. We will assume "natural boundary conditions" in 
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the following, i.e., the vanishing of W ,  and its derivatives at the bound- 
aries. 

The conditional distribution P also satisfies, besides Eq. (2.10), the 
adjoint equation, which is called the backward equation. It is obtained 
by differentiating the relation 

W , ( { w ) ,  t ) =  j {dw ' )  P ( { w ) I { w 1 ) ;  4 W , ( { w l ) ,  t - r )  (2.1 1) 

with respect to z and using Eq. (2.10) to express the time derivative 
of W ,  on the right hand side of this equation. The differential operations 
on W l ( { w ' ) ,  t - z )  are then transferred to P by partial integrations, 
using the natural boundary conditions. Finally, since W l  is an arbitrary 
distribution, integrands can be compared to yield 

This equation will be used in Section 4.2. 

b) Lungevin Equations 

Instead of Eq. (2.10) one may use a set of equations of motion for the 
time dependent random variables { w ( t ) }  themselves. These are the 
Langevin equations, which are stochastically equivalent to the equation 
for the probability distributions W l  or P,  in the sense that the final 
results for all averaged quantities are the same. The Langevin equations 
corresponding to the Fokker-Planck $quation (2.10) take the form [20] : 

= K i ( { w ) )  + Fi({w>, t )  
with 

The (n x n)-matrix gik({ ,w))  has to obey the n(n  + 1) relations 

g. g = K . .  t k j k  r j  
(2.1 5)  

and is arbitrary otherwise. 
The quantities t k ( t )  are Gaussian, &correlated fluctuating quantities 

with the averages 

( T i ( [ ) >  = 0 (2.16) 

(ti([) + z ) )  = di 6 ( ~ )  . (2.17) 

The higher order correlation functions and moments of the 1;) are 
determined by (2.16), (2.17) according to their Gaussian properties. 

' For K i j  independent of {w} the Langevin equations are equivalent to the Fokker- 
Planck equation. Otherwise the correspondence is approximate only (cf. [20]). 
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A characteristic feature of all Langevin equations, which also occurs 
in Eq. (2.13), is the separation of the time variation into a slowly varying 
and a rapidly varying part. In the present case this separation is not 
unique, since we may impose another n ( n  - 1)/2 independent conditions 
on g i j ,  besides the n (n  + 1)/2 relations (2.15), in order to fix its n2 elements 
completely. Usually, these relations are chosen to make gij symmetric 

which implies, that now the i'th noise source is coupled to w, in the 
same way as the ,j'th noise source is coupled to wi. This condition is 
by no means compelling and can be replaced by other conditions, if 
this happens to be convenient4.While this would change gij and the mean 
value of the fluctuating force 

it would leave unchanged all results for { ~ ( t ) ) ,  after the average has 
been performed. This may be simply proven by deriving Eq. (2.10) from 
Eq. (2.13) [20] .  

Physically, the appearance of a coupling of the { w ( t ) )  to a set of 
Gaussian random variables with very short correlation times reflects 
the coupling of the macroscopic variables to a large number of statisti- 
cally independent, rapidly varying microscopic variables. Therefore, Eq. 
(2.13) gives a very transparent mathematical expression to our basic 
physical assumptions. 

2.2. Nonequilibrium Theory as a Generalization of Equilibrium Theory5 

The equations of motion obtained in the last section can be compared 
with familiar equations of equilibrium theory. The Fokker-Planck equa- 
tion (2.10) may be written as a continuity equation for the probability 
density W ,  in the general form 

In Eq. (2.20) we introduced the drift velocity { r ( { w ) ,  t ) )  in {wf-space. 
In order to establish a connection with equilibrium theory we define a 
"potential" 4 ( { w } .  t )  by putting 

For n > 2 a possible condition is d g i j / d w i  = 0 for all j, in which case some of the 
following expressions are simplified considerably. 

By equilibrium theory we mean the theory of thermal equilibrium and the linearized 
theories in the vicinity of thermal equilibrium. 
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Here, N is a normalization constant, which is independent of { w )  and t. 
Comparing now Eq. (2.20) with Eq. (2.10) and using Eq. (2.21) we may 
express the drift coefficient K i ( { w ) )  in terms of the newly defined quan- 
tities 4 and { r ) .  We obtain 

The left hand side of Eq. (2.22) represents the total drift, as can be seen 
by writing Eq. (2.10) in the form 

Eq. (2.22) shows, that the total drift can generally be decomposed into 
two parts. The first part is connected with the first order derivatives 
of the potential &t). The second part is the drift velocity of the proba- 
bility current which satisfies the continuity Eq. (2.20). The decomposi- 
tion (2.22) holds for all potentials 4 ( t )  and velocities { r ( t ) )  which together 
satisfy Eq. (2.20) at a given time. Of special interest is the pair @ ( { w } )  
and { r ' ( {w) ) )  which solves Eq. (2.20) in the stationary state with 
a W;/a t  = 0 .  By introducing the decomposition (2.22) into the Langevin 
equations we obtain 

The decomposition (2.22) is well ,known from the theory of systems 
near thermal equilibrium, where it Bcquires a special meaning. There, 
the decomposition (2.22) simultaneously is a decomposition of the total 
drift into two parts which differ in their time reversal properties. The 
first part of the drift in Eq. (2.22) describes the irreversible processes. 
The expressions - +Kik  a&/aw, represent the familiar set of phenomeno- 
logical relations giving the irreversible drift terms as linear functions of 
the thermodynamic forces, defined by the derivatives ofa thermodynamic 
potential [13].  The coefficients K, ,  are then the Onsager coefficients in 
these relations. The fact that they also give the second order correlation 
coefficients of the fluctuating forces is a familiar relation for thermal 
equilibrium. The remaining part of the drift is associated with reversible 
processes, described by some Hamiltonian. The continuity Eq. (2.20), 
satisfied by this part. is then simply an expression for the conservation 
of energy in the form of a Liouville equation. 

Unfortunately, such a simple physical interpretation of the two dif- 
ferent parts of the drift is not possible, in general, for nonequilibrium 
states. There, both parts contain contributions from reversible and 
irreversible processes. Eq. (2.22) is then no help for calculating the 
potential bS, and the stationary distribution W ;  from the drift and 
diffusion coefficients. 

In all cases, however, in which the potential dS, the velocity { r s)  
and the diffusion coefficients K i k  are known by other arguments (e.g. 
by symmetry). Eq. (2.22) is useful to determine the drift Ki ( {w} ) .  This 
gives the key for a phenomenological analysis of the dynamics of station- 
ary nonequilibrium systems in cases in which symmetry arguments play 
an important role (cf. section 3). 

2.3. Generalization of the Onsager-Machlup Theory 

In this section we put the equations obtained in 2.1 on a common basis 
with the phenomenological theory of thermodynamic fluctuations. While 
this is useful from a systematic point of view, it is not necessary for an 
understanding of the other sections. 

A set of Langevin equations of the form (2.13) has been used by 
Onsager and Machlup [14] as a starting point for a general theory of 
time dependent fluctuations of thermodynamic variables. However, an 
essential restriction of their theory was the assumption of the linearity 
of Eqs. (2.13). The same assumption has also been used by a number of 
subsequent authors [15, 161, although the necessity for a generalization 
of the Onsager Machlup theory to include nonlinear processes was 
emphasized [16].  

In this section we shall give such a generalization, starting from 
Eqs. (2.13) and allowing for nonlinear functions K i ( { w } )  and g i j ( {w) ) .  
This generalization will serve the two purposes: first, showing in which 
limit the usual thermodynamic fluctuation theory is contained in the 
present formulation and second, showing' the limits of the Onsager 
Maclilup formulation of fluctuation theory for general Langevin Eqs. 
(2.13). An essential point of the Onsager Machlup theory is to consider 
probability densities for an entire path {w( t ) )  in some given time interval, 
rather than for {w(t ,))  at a given time t,. The probability density for an 
entire path is obtained from the hierarchy (2.2) in the limit in which 
the differences between different times go to zero. In this limit we obtain 
a probability density functional W,[{w)] of the paths {w( t ) )  which may 
be viewed as a function of the infinite number of variables {w( t )}  taken 
at all times in some given time interval t ,  2 t 2 t,. The Onsager Machlup 
theory can now be characterized by the postulates 1161 that 

i) {w( t ) )  is a stationary Markoff process, and 

ii) the probability density functional W,[{w)] is determined by a 
function O({w( t ) } ,  { w ( t ) } )  in the following way: 
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where F,, is defined by the integral 

G in Eq. (2.25) is a nonnegative but otherwise arbitrary function. It 
can be determined by the following argument. From the first postulate 
we infer, that the conditional probability density P obeys the relation 

P({w"') I {w'") ; t ,  - t l )  (2.27)  

= S{dw"-")  P ( { w ' ~ ' ) J { w ~ ~ - ~ ' ) ;  t ,  - t,- P ( { W ( ~ - ~ ) ) ~ { W ( ~ ) } ;  t v -  - t , )  . 

On the other hand P is given in terms of W ,  by the functional integral 

where the integration runs over all paths passing through the indicated 
boundary values. The integrand in Eq. (2.28) could also be expressed as 
G(Fvl ) .  Taking Eqs. (2.27) and (2.28) together, we obtain the relation 

Since this equation must be fulfilled for all choices of the intermediate 
boundary of integration {w( ' - ' ) ( t ,_  ,)), Eq. (2.29) is a relation for the 
non-negative function G, which has the simple structure 

The unique, nonsingular and nontrivial solution of Eq. (2.30) has the 
form 

By measuring the function 0 in appropriate units, we may take a = - 1 
and obtain 

which determines W ,  up to a normalization constant, which will not 
depend on { w ) ,  { w } .  

An expression of the form (2.32) is useful as a starting point of fluc- 
tuation theory, as was first noted by Onsager and Machlup. Eq. (2.32) 
establishes for time dependent fluctuations a relation between a proba- 
bility density and an additive quantity, the Onsager Machlup function 
0. 0 has thermodynamic significance. since it can be related to the 
entropy production. Therefore, Eq. (2.32) is the time dependent analogue 
to the familiar relation between probability density and entropy which 

holds in the static case. In addition, Eq. (2.32) is valuable, because it 
contains in a concise form the most complete information on the paths 
{w( t ) } .  Hence, the Onsager Machlup function 0 plays a role in fluctua- 
tion theory, which is similar to the role of the Lagrangian in mechanics. 

We determine now the Onsager Machlup function which is equivalent 
to the equations of motion (2.13). The Onsager Machlup function 
of { ( ( t ) } ,  introduced in (2.14), may be written down immediately, by 
using Eqs. (2.16), (2.17). We obtain 

w , [ { ( ) ]  = lim fi (vm . dt(t,,)) exp 
A t - 0  

where t o  5 t  5 t ,  is some given time interval and 

is a discrete time scale which becomes continuous in the limit At-+O, 
N -+ a. From (2.33) we obtain 

From Eq. (2.33) we may derive an expression for W ,  [ { w ) ] ,  since Eq. (2.13) 
defines a mapping of both functionals on each other. The probability 

has a physical meaning and is an invariant of this mapping. The volume 
elements in function space are connected by the Jacobian of the mapping 
(2.13) 

[ { d c ) ]  = D ( { w ) )  [ { d w ) ]  . (2.37) 

Since the mapping (2.13) is nonlinear in our case, the Jacobian is not 
merely a constant, as in the Onsager Machlup theory, which could be 
absorbed into the normalization constant, but it rather is dependent on 
{ w }  and has to be calculated. This can be done in a conventional way 
by introducing a discrete time scale, Eq. (2.34), and passing to the con- 
tinuous limit at the end of the calculations. The discretization of Eq. (2.13) 
has to be done with some care, introducing only errors of the order 
(At) ' .  in order to obtain the correct continuous limit At-+O. We skip 
the lengthy but elementary calculation and give immediately the result 
for the Jacobian 
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the functional integral 

We can now write down the complete functional W, [{w}], by introduc- 
ing the mapping (2.13) into Eq. (2.33) and taking into account Eqs. 
(2.36) - (2.38). 

W, [{w}] [{dw}] = {dw(tv)} [2n At - Det (Kj;))] -'I2 

The Onsager Machlup function is obtained as 

Eqs. (2.40), (2.41) generalize the result for linear processes in two ways. 
First, Eq. (2.41) contains a correction term which comes from the non- 
linearity of the total drift Ki({w}) - ~aKik({w})/awk. Secondly, the de- 
pendence of the diffusion coefficients' K,,({w}) on the variables alters 
the form of the functional (2.40). Eq. (2.40) shows, in fact, that the second 
postulate of the Onsager-Machlup theory is no longer valid if the diffu- 
sion coefficients are functions of the variables {w}, since the Onsager 
Machlup function alone does no longer determine the probability density 
functional. 

The expressions (2.40). (2.41) can be used as a starting point to derive 
in a systematic way the equations of the preceding sections. We indicate 
very briefly how this can be done. The conditional probability density 
P ( { W ~ ~ ) } ~ { W ~ ~ ~ } ,  t, - t ,)  is given in terms of 0 by the functional integral 

with Eq. (2.40). This functional integral has a pronounced analogy to 
the path integrals introduced by Feynman into quantum mechanics [22]. 
In fact, it was shown by Feynman that the Green's function G of the 
Schrodinger equation for a particle of mass m moving from a point in 
space {x(O)} at time to to a point {x'"} at time t l ,  can be obtained as 

,~ , . .. 
~ ( { x ( ~ ) } ) { x ( ~ ) } ,  t, - to) = j lim n dx") .(2n ~ t m - I  hi)-'/' 

(x(0)(to)) A* - 0 ( v )  

where L is the Lagrangian of the particle. From this formal analogy a 
number of interesting results immediately follow. 0 is, in fact. the ana- 
logue of a Lagrangian for the motion in {w}-space. Once 0 is known, 
the Fokker-Planck equation can be derived in analogy to the derivation 
of the Schrodinger equation in the Feynman theory. This analogy of the 
Fokker-Planck equation and the Schrodinger equation proved to be 
very useful in laser theory [19] and many different fields of statistical 
mechanics (cf. the papers by Montroll, Kawasaki, Zwanzig in [23]). The 
analogue of the classical limit of a very heavy particle (m+ a) in quantum 
mechanics is, in our case, the limit of vanishing fluctuations Kik+O. 
In this limit the "Lagrangian" equations 

give an adequate description. For nonvanishing fluctuations, but con- 
stant diffusion coefficients K,,, these equations still remain valid if they 
are averaged over the fluctuations, in analogy to Ehrenfest's theorem of 
quantum mechanics. 

3. The Stationary Distribution 

In this section we will consider some general properties of the stationary 
state in descriptions which either neglect or include fluctuations. Of 
particular interest are the symmetry changing transitions between dif- 
ferent branches of states, which are caused by instabilities of the system. 
In the first subsection we give a discussion of various stability concepts 
and obtain several results on the stability of the stationary state. In 
the second subsection we consider some consequences of symmetry 
for the stationary distribution. The results of these subsections are quite 
analogous to results of equilibrium theory. It will become clear that a 
close analogy exists between second order phase transitions and sym- 
metry changing transitions between different branches of stationary non- 
equilibrium states, and that a phenomenological approach can be used 
to obtain the stationary distribution in the vicinity of the instability. 
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The limits of the analogy are shown in the third subsection, where we 
discuss the dissipation fluctuation theorem for stationary nonequilibrium 
states. 

3.1. Stability and Uniqueness 

In Section 2 we introduced two different descriptions for the "state of 
the system". The first was given by a set of numbers { w ) ,  Eq. (2.1), the 
second was given by a set of probability densities, Eq. (2.2). With both 
descriptions we may associate a definition of the stationary state and 
of the stability of the stationary stGe. 

a) Stability of a Single State 

Let us first deal with the description furnished by the set of numbers 
(2.1). This description is adequate if fluctuations can be neglected. A 
stationary state is obtained if 

{wy t ) }  = {wS(t  + T ) )  (3.1) 

is either constant or periodic in time with some constant period T 2 0.  
The probability distribution, corresponding to (3.1) is 

Wf = n 6 (wi - wq(t)) (3.2) 
(i) 

i 
which changes periodically in time. The stationary distribution, which 
one obtains as a limit for very small K,,, is not Eq. (3.2) but rather the 
time average 

which defines a time independent surface in {w)-space, rather than a 
moving point, like (3.2) 6 .  The dynamics is described, in the present case, 
by the drift approximation Eq. (2.8) of the Fokker-Planck equation, or 
by the Langevin equations in the same limit, which, according to Eq. 
(2.24), may be put into the form 

The potential 6 is given by the stationary distribution 

Ws- exp(- 6) . (3.5) 

If several stable states (3.1) coexist, the limiting distribution (3.3) is distributed over 
several surfaces. 

The stationary drift velocity {P) satisfies the equation (cf. Eqs. (2.20) 
(2.22)) 

Since {r s)  is the stationary drift velocity, {w" has to fulfill the equation 

By comparison with Eq. (3.4) we find 

which is satisfied for all states of maximum or minimum probability. 
In order to analyze the stability of these states we distinguish two 

cases. In the first case 

In the second case Eq. (3.9) does not hold. In the latter case {r" has 
a component orthogonal to surfaces of equal potential @, and no general 
prediction about the stability of the stationary state can be made. 

If (3.9) is satisfied, @ can be used as a Lyapunoff function [24] for 
Eq. (3.4), since the total time derivative of 6 is given by 

and is always negative, except when condition (3.8) is fulfilled, when it 
is zero. Here we made use of the positive definiteness of the diffusion 
matrix. In a neighbourhood of stationary trajectories connecting points 
of maximum probability density (minimum 6) we have 

If {w" is a local, non-degenerate minimum of @, the > sign in (3.1 1 )  
holds for { w )  + {w". In this case 6 - Fmi, has all the required proper- 
ties of a Lyapumoff function and the state {w" is found to be stable. 
For {w s)  independent of time, it follows from Eq. (3.7) that {r"{w")} = 0. 

In the case where the minimum of @ are continuously degenerate, 
there are states in the neighbourhood of each {w" for which the equality 
sign in Eq. (3.11) holds. This is always realized, if j r ~ { w s ) ) }  is different 
from zero. Then the trajectory is still stable with respect to fluctuations 
towards states with lower Wf and higher 4: It is metastable with respect 
to fluctuations towards states with equal 6 ,  which are either on different 
trajectories or on the same trajectory. Metastability of the latter kind 
leads to a diffusion of the phase of the periodic trajectories (3.1). The 
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presence of fluctuations, even if they are very small, thus completely 
changes the stability results for the stationary state. This will be considered 
further in the next subsection. Here we see that stable stationary states 
are associated with minima of @ and that several stable states may co- 
exist simultaneously. The symmetry of the stationary states is given by 
the symmetry of the minima of 6". 

b) Stability and Uniqueness of an Ensemble of States 

If a statistical description of the system is used, a stationary state has 
to be defined by the condition, that the probability densities (2.2) depend 
on time in a periodic way. In particular 

has to be constant or periodic in time with T 2 0. We will find that 
T = 0 is the only possibility. The stability of the stationary state is now 
determined by the stability of the solutions (3.13) of Eq. (2.10). As was 
indicated in subsection a, even the slightest fluctuations change the 
stability considerations completely. The system of Eqs. (3.4) could have 
a manifold of stable solutions. If fluctuations are present, which allow 
the system to assume all values {w}, we find that generally only one 
stable probability density (3.13) describes the stationary state of the 
system. Hence, all the instabilities, which were possible in Eq. (3.4), are 
now buried, even in the slightest fluctyations. The instabilities manifest 
themselves only in the detailed form bf the probability density W f ,  as 
will be discussed in 3.2. 

The proof of the stability and uniqueness of the stationary distribu- 
tion of Eq. (2.10) has already been given by Lebowitz and Bergmann [25] 
under rather general conditions. We give here a short account of their 
proof. It consists in showing that the function 

with the property 

> 0 for Wl + Wf 
K( t )  - - w1 = w; 
can only decrease in the course of time. The same function was employed 
in [5]  for a general analysis of stationary nonequilibrium states. The 
property (3.15) can be shown by replacing ln(W,/W;) in Eq. (3.14) by 
In( Wl/  W f )  - 1 + W g W , ,  (which is possible because of the normalization 
condition for the probability densities) and using the inequality 

> 0 for x>O,  x + l ,  
lnx- '  - 1 + x 

= 0 for x = l .  

The time variation of K(t )  is given b~y 

which, by using Eq. (2.4), we may write as the double integral 

K(t  + z) - K( t )  = j {dw"') {dw"') P {w")} I { w " ) )  ; t + T, t )  W l ( { ~ ( Z ) ) ,  t )  

[ l n Q +  1 - Q ] I O  (3.18) 
with 

If we assume that all points in {w)-space are connected with each other 
by some sequence of transitions, the equality sign in Eq. (3.18) holds 
if and only if Q = 1 ,  i.e. 

w,({w'"), t + z) - - W , ( { W ( ~ ' ) ,  t)  
- = const 

W;({w("),  t + z) ~ ; ( { w ' ~ ' ) ,  t )  

The constant in Eq. (3.20) is 1 by normalization. This proves that K( t )  
has the properties of a Lyapunoff functional for Eq. (2.10). It shows 
that all probability densities W ;  approach each other in the course of 
time. If the limit exists, it is given by the stationary distribution W;, 
which is unique and stable. 

As a consequence, the periodic time behaviour, postulated for the 
stationary distribution W; in (3.13), has to be specialized to time inde- 
pendence. Otherwise it would be possible to construct many different 
stationary solutions simply by shifting the time t by an arbitrary interval. 
More generally, it follows from the uniqueness of the stationary distribu- 
tion, that Wf and @ have to be invariants of all symmetries of the system. 
Otherwise, many different stationary distributions could be generated 
by applying one of the symmetry transformations of the system. These 
transformations leave Eq. (2.10) unaltered, but would change the sta- 
tionary distribution if it were not an invariant. 

3.2. Consequences of Symmetry 

The fact that the stationary distribution Wf is an invariant ofall symmetry 
operations of the system has some interesting consequences, which are 
discussed now. For the case of weak fluctuations the distribution W; 
will have rather sharp maxima. The behaviour of the system will then 
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depend on the location of these maxima and on the behaviour of Wf 
in their vicinity. Both properties of Wf are determined by the sym- 
metries of the system in the following way. Extrema of Ws appear on 
all points in {w)-space which are left invariant by some symmetry 
operation of the system (cf. Figs. 4, 5 point 0). Since Wf as a whole is 
an invariant, the vicinity of each extremum has to remain unchanged 
by the same symmetry operation which gave rise to the extremum. There- 
fore, a point in {w)-space which is invariant against all symmetry opera- 
tions, has to be a local extremum of Wf with completely symmetric neigh- 
bourhood (Figs. 4, 5 point 0). Extrema with lower symmetry have a 
neighbourhood with lower symmetry. Such extrema must occur in de- 

Fig. 4. The potential @ in the vicinity of a stable symmetric state 0 in a system with two- 
dimensional rotation symmetry 

Fig. 5. The potential @ in the vicinity of a metastable state P with lower symmetry, for n 
system with two-dimensional rotation symmetry 
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generate groups. The degeneracy is either continuous on a whole sur- 
face in {w)-space (cf. Fig. 5 point P), or discontinuous (cf. Fig. 2, point P), 
depending on whether the symmetry broken by the extremum is continu- 
ous or discontinuous. 

We consider now the reaction of the system, when we change the 
external forces acting on it. The external forces are described by a set 
of time independent parameters {A). It is always assumed that a change 
of { I )  does not change the symmetries. Therefore, only the detailed 
forms of Wf and 6 can depend on {I), but not their global symmetry 
(cf. Figs. 4, 5). In particular the location of the nondegenerate symmetric 
extrema of Ws cannot change. However, these fixed extrema can be 
transformed from minima into maxima and vice versa. These trans- 
formations are the cause for symmetry changing transitions. Consider, 
e.g., a highly symmetric maximum of Wf (point 0 in Fig. 4). As long 
as it retains its maximum property, a variation of {A) has only a small 
(quantitative) effect on the stationary state (3.1). Assume now that for 
some critical value {A) = {A,), the maximum of Ws is transformed into 
a minimum. Since Wf must be zero at the boundaries, a new maximum 
of Wf must be formed somewhere (point P in Fig. 5). Since the symmetric 
point is already occupied with the minimum of Wf, the new maximum 
must form on a less symmetric point. Therefore, it breaks the symmetry 
and is degenerate with a whole group of other maxima. The new stationary 
state (3.1) of the system is now given by one of these less symmetric 
maxima, i.e., a symmetry changing transition has occurred. This behaviour 
is well known for systems in thermal equilibrium undergoing a second 
order phase transition and concepts of second order phase transitions 
may, in fact, be applied to this problem. It should be noted, however, 
that most of the difficulties of phase transition theory can be avoided 
here, because they are due to the necessity of taking the thermodynamic 
limit of an infinite system. This limit has not to be taken for the examples 
we consider here. Therefore, the mean field theory of phase transitions, 
which disregards the singularities due to the thermodynamic limit, is 
particularly well suited for our cases. Its derivation in terms of pure 
symmetry arguments was given by Landau [17]. We apply his reasoning 
to determine Wf in the vicinity of {A) = {A,}. 

Let G be the symmetry group describing the symmetries of the branch 
of states with higher symmetry. Then the state {w"Ic}) is an invariant 
of G. In the vicinity of the transition the states on the less symmetric 
branch differ little from {wS({Ac))) and we may put 

{w"{A))) = {ws({Lc))) f {A wS({A))) (3.21) 

with small {Aw". The potential &({\v)) can now be determined from 
the condition, that (3.21) gives its minima (cf. Eq. (3.8)). Since {Aw~{L})) 
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is small we may expand @ in a power series of { A  w )  = { w )  - {w"{Ac))} .  
Since @ is an invariant of G it can only depend on invariants which 
can be formed by powers and products of the variables { A w ) .  There 
is no first order invariant of G besides {ws( { l lc ) ) ) .  Hence, the power 
series starts with the second order invariants F,,( ' )({dw)) ,  one invariant 
being connected with each irreducible representation v of G. The invari- 
ants F:')({Aw)) can all be chosen to be positive. This gives 

@= ~ a v F ~ 2 ) ( { ~ w ) ) +  .... (3.22) 
v 

For a,>O the minimum of 6 is given by { A w s)  = 0 ,  and describes 
the symmetric branch. All F:" are zero on this branch. A symmetry 
changing instability occurs, if at least one of the coefficients a,  changes 
sign for {A) = {A,).  The corresponding invariant F:') will then have a 
non-zero value in the stationary state, and higher order terms in the 
expansion are required. The third order invariants have to vanish if 
{Aws ( {Ac ) ) )  is to be a stable state and the 4th order terms have to be 
positive definite. The potential 4' is then given by 

@ = aF(2 ) ( {A  w ) )  + b,F:'({Aw)) 
P 

In this expansion all second order invariants have been dropped, besides 
the one invariant F"), whose coefficient a changes sign at the transition 
point. The other invariants describe quctuations which are weak com- 
pared to the strong fluctuations arising from the transition. The latter 
are only limited by the 4th order terms in the expansion. For the same 
reason, only the fourth order invariants of the corresponding irreducible 
representation have to be taken into account. This limits the number of 
phenomenological coefficients a,  b which have to be introduced. The 
expansion (3.23) may be, simplified further by introducing the new vari- 
ables 

Since the second order term in Eq. (3.23) depends on r ]  only, the fluctua- 
tions in { A k )  are small, so that these variables can be replaced by the 
quantities which minimize @ under the constraint 

F ( ~ ) ( {  A&)) = 1 . (3.26) 

The remaining expression 

@ = av2 + bv4 
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with 

gives 4" and the stationary distribution W," as a function of the second 
order invariant (3.24) alone. Thus, in the vicinity of a symmetry changing 
instability the number of variables, on which the potential @ a n d  the 
stationary distribution W; - exp( - 4') depend, is effectively reduced to 
1. This will simplify the analysis of the dynamics considerably. 

3.3. Dissipation-Fluctuation Theorem for Stationary Nonequilibrium States 

The linear response of a system ', described by Eq. (2.10), to an external 
perturbation can easily be calculated by adding a perturbation term on 
the right hand side of Eq. (2.10). We obtain 

Here, L is the linear operator acting on W, on the right hand side of 
Eq. (2.10). It fulfills the relation 

The operator Lex,  describes an additional external perturbation. In 
general, it will take the form of a Poisson bracket with a perturbation 
Hamiltonian Hex, .  

In defining the Poisson bracket in Eq. (3.31) we have assumed that we 
can split the variables { w )  into pairs of generalized coordinates { u )  and 
momenta { v ) .  This is not a real restriction, since for each coordinate 
we may formally introduce a conjugate momentum, on which @ depends 
as a second order function. At the end of the calculations we may eliminate 
these variables by integrating over them. Hex, is then the Hamiltonian 
of the external perturbation which has the general form 

Here, { F ( t ) )  is a set of external forces coupled to the system by some 
functions { A ( { u ) ,  { v ) ) } .  By standard first order perturbation theory, we 
find the first order response A X  of some function X ( { u ( t ) ) ,  { v ( t ) ) )  to 

For other calculations see [26] and [27]. The latter treatment is similar to the one 
given here. 
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the external force Fi(z) 4.1. Microscopic Reversibility and Detailed Balance 

The well known result for the response function 4 x , i ( z )  

4X,i(7) = ( [ A i ( { u ( t ) ) ,  { v ( t ) ) ) ,  X ( {u ( t  + z ) ) ,  {v ( t  + 7 ) ) ) I )  (3.34) 

is the average of a two-time Poisson bracket. Expressing W s  by @ we 
obtain 

which is the two-time correlation function of the function X  and a Poisson 
bracket. This result is similar to the result for thermal equilibrium systems. 
There, 6 is replaced by the Hamiltonian H and the Poisson bracket 
reduces to a first order derivative in time. Apart from special cases, no 
general relation between @ and the evolution in time exists in stationary 
nonequilibrium systems. Hence, this last step cannot be performed in 
this general case. In the special case of systems which have the property 
of detailed balance in the stationary state, a further simplification is 
possible. These systems are considered in the next section. 

4. Systems with Detailed Balance 
L 

In the discussion of the stationary distribution in the preceeding section 
we could make use of many considerations familiar from systems in 
thermal equilibrium. In general, this analogy does not hold for the 
dynamic behaviour. As indicated in 3.3, the stationary distribution con- 
tains only a little information about the dynamic behaviour of the system. 
The reason is, as we will see in this section, the lack of detailed balance in 
stationary nonequilibrium states. It is the presence of detailed balance in 
thermal equilibrium, which provides there the important link between 
statics and dynamics. Therefore, the special class of stationary nonequilib- 
rium systems exhibiting detailed balance with respect to their relevant 
variables { w )  should show a close analogy to thermal systems, even 
with respect to their dynamic behaviour. The detailed balance of station- 
ary nonequilibrium systems will not be complete and will not comprise 
all degrees of freedom, because of the action of external forces and fluxes. 
Fortunately, it is sufficient for our purposes to consider systems showing 
detailed balance with respect to the small number of variables { w )  which 
are used to describe the system. Detailed balance is discussed from a 
general point of view in [28 ] .  Some implications for Markoffian processes 
were considered in [21 ] .  Our analysis follows the recent papers [29, 301. 

In the following the transformation of the variables { w )  with time reversal 
is important. We define a new set 

where E~ = - 1 ( +  if wi does (does not) change sign if time is rever- 
sed. (The variables can always be chosen that either of these are true.) 
Similarly we consider the time reversal transformation of a set of exter- 
nally determined parameters {A),  on which the probability densities may 
depend, and define 

where vi = - 1 ( +  I ) ,  if Ai does (does not) change sign if time is reversed. 
The property of microscopic reversibility may now be defined by the 
relation 

w , ( { w ( ~ ) } ,  t  + 7 ;  { w ( l ) } ,  t ;  { A } )  = W , ( { G ( ~ ) ) ,  t  - 7 ;  { f i ( l ) ) ,  t ;  { I } )  (4.3) 

where the dependence of the probability densities on the external param- 
eters {A) has been made explicit. By specializing microscopic reversibility 
(4.3)  for the stationary state we obtain the property of detailed balance 

W,s({w'">, t  + 7 ;  {w( ' ) ) ,  t ;  {A) )  = W i ( { G ( l ) ) ,  t  + 7 ;  t ;  { I ) ) .  (4.4)  

Equation (4.4) expresses the following property of the stationary state: 
The number of transitions from {w"))  at t  = t ,  to {w',)) at t  = t ,  is equal 
to the number of transitions from { v%'~) )  at t  = t ,  to { f i " ) )  at t  = t , .  
Therefore, apart from reversible motions, each pair of states {w")) ,  
{ w ' ~ ) )  is separately balanced in the stationary state. By using Eq. (2.3) 
we may rewrite Eq. (4.4)  in the form 

P ( { w ( ~ ) )  I { ~ ( l ) )  ; 7 ;  { A ) )  W ; ( { W ( ~ ) }  ; { A } )  
(4.5) 

= P ( { f i ( l ) }  1 { f i ( , ) )  ; 7 ;  { I } )  w;({fi(2)} ; { I } )  . 
Integrating Eq. (4.5) over {w',))  we obtain a symmetry condition for 
WS({w))  

w s ( { w )  9 {A))  = W,"({E) .  { I ) ) .  (4.6) 

For systems in thermal equilibrium Eq. (4.5) can be derived from the time 
reversal invariance of the microscopic equations of motion. This deriva- 
tion is no longer possible for systems in stationary nonequilibrium states, 
since external forces and fluxes will destroy detailed balance. The station- 

s In all formulas containing ei and v ,  no summation over repeated indices is implied. 
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X # O  
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Fig. 6a-d. Stationary states with and without detailed balance for a 3-level atom. a Energy 
levels with transitions rates r i j  and pump rate I. b Equilibrium (I = 0) with detailed balance. 
c Stationary nonequilibrium state (I +0) without detailed balance. d Stationary non- 
equilibrium state (A $0) with detailed balance for r ,  , = r , ,  = 0. 

ary distribution will then be maintained by cyclic sequences of transi- 
tions between more than two states [28]. The example of an externally 
pumped three-level atom, shown in Fig. 6, has been discussed in the litera- 
ture [28, 311. This example makes it obvious, that, detailed balance in a 
stationary nonequilibrium system wil\ be present, if each pair of states is 
connected by only one sequence of allbwed transitions. In Fig. 7, we give 

Fig. 7. Detailed balance in a one-dimensional array of states with transitions between 
neighbouring states. 

as an example, a system for which only transitions between neighbouring 
states in a one-dimensional array are allowed. In the limit in which the 
configuration space becomes continuous, the transitions in this example 
would have to be described by a Fokker-Planck equation in a one- 
dimensional configuration space. If the transitions have to vanish at 
the boundaries of the configuration space, it is obvious from Fig. 7 that 
detailed balance has to be present in the stationary state. In all cases, in 
which the configuration space of the system has more than one dimension 
(cf. Fig. 8), each pair of states is connected by many different sequences of 
allowed transitions, even if only transitions between neighbouring states 
in configuration space are allowed. In these cases, detailed balance is 
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guaranteed, if symmetry demands that the transition rate from one state 
to some other state is equal for all possible sequences of intermediate 
states. E.g., if the external forces acting on the system represented by 
Fig. 8 can only cause transitions between different states in radial direction, 
and if a rotation of phase space leaves the system properties unchanged, 
the boundary conditions are still sufficient to guarantee the presence of 
detailed balance. 

Fig. 8. Detailed balance in a two-dimensional array of states with transitions between 
neighbouring states 

Detailed balance due to symmetry is of special importance for sta- 
tionary nonequilibrium systems in the vicinity of a symmetry changing 
instability. For such systems an expression for the potential @ was ob- 
tained in Section 3.2. This expression can be inserted into Eq. (2.24) in 
order to obtain an equation of motion. If the external forces acting on the 
system enter this equation of motion only by the derivative a@/aw, and 
not by {r", detailed balance has to be present in the stationary state 
because of symmetry, for the following reason. The external forces deter- 
mine the coefficient a in Eq. (3.27) and are thus coupled to the system 
only by a second order invariant; this coupling can only cause transitions 
between states having different values of the second order invariant; 
the boundary conditions are sufficient to guarantee detailed balance 
with respect to these transitions.Transitions between states without 
change of the second order invariant are not influenced by the external 
forces and, hence, are in detailed balance as well. This general mechanism 
explains why many of the stationary nonequilibrium systems which are 
considered in part B have the property of detailed balance. 

4.2. The Potential Conditions 

In this section, we derive the conditions which have to be satisfied by 
the drift and diffusion coefficients of Eq. (2.10), in order to guarantee 
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detailed balance in the stationary state [29]. To this end we solve Eq. 
(4.5) for P ( { w )  1 {w ' )  ; z ;  {A))  and insert the resulting expression into Eq. 
(2.10), which P must satisfy. The equation for P ( { G f ) ( { G ) ;  z ;  { I ) ) ,  which 
we obtain in this way, is simplified by using the time independent equa- 
tion of motion for the stationary distribution Ws.  It takes the form 

P ( { G f )  I { G )  ; z ;  { I ) )  = 0 . (4.7) 

Thisequation is now compared with the backward equation (2.12), which 
we may rewrite in the form 

{ a / a ~  - ( K i ( { w ) )  + +K,,({W)) alaw,) a/awi} P ( { G ~ ) ) { G ) ;  7 ;  { I ) )  = o (4.8) 

by substituting 

{w'} - { G }  ; { w }  - { S f }  ; {A} - { I }  (4.9) 

and introducing the notation 

Eliminating the time derivative froq Eqs. (4.7), (4.8) we obtain the 
identity L 

which holds for all times. All quantities in the curly brackets are functions 
of { w )  and {A). For z = 0, P is a b-function according to the initial condi- 
tion (2.7). Multiplying Eq. (4.11) by an arbitrary function F({wl ) )  and 
integrating over {w')  for z = 0 ,  we obtain an identity, which contains 
terms linear in the first and second order derivatives of F. Since F and 
all its derivatives are arbitrary, the coefficients of all terms must vanish 
separately. This yields the potential conditions 

and 

Di - $ a K i  Jawk = - 3 K i k  d@/awk .  (4.13) 

In Eq. (4.13) we introduced the "irreversible drift" 

which transforms like wi if time is reversed. Eqs. (4.12), (4.13) can be 
combined with Eq. (2.10) to yield 

Here we introduced the "reversible drift" 

which transforms like wi if time is reversed. The drift coefficient K i  is 
given by the sum 

So far we have shown that the potential conditions (4.12), (4.13) are 
necessary for the compatibility of Eq. (2.10) with the condition of detailed 
balance (4.5). In order to show that they are also sufficient, we derive 
now the symmetry relation (4.5) from the conditions (4.12), (4.13) by 
assuming that the Fokker-Planck equation and its adjoint (2.12) hold. 
Since Eqs. (2.10), (4.12), (4.13) hold, the identity (4.11) is certainly ful- 
filled. Using Eq. (2.12) in its form (4.8), we may work from Eq. (4.1 l )  back- 
wards and obtain the Fokker-Planck equation (2.10) for the quantity 
P({G')  I {GI ; z ;  { I ) )  w s ( { G ) ,  { I ) )  . 

The drift and diffusion coefficients of this Fokker-Planck equation 
depend on { w ) ,  {A).  By assumption, the same equation with the same 
initial and boundary conditions holds for the quantity P ( { w )  1 { w ' ) ;  z ;  {A)).  
In as much as the Green's function for the Fokker-Planck equation 
with natural boundary conditions is unique apart from a normalization 
constant N, we may equate the two quantities 

Integrating over { w )  we obtain 

whereby Eq. (4.18) is reduced to the relation (4.5). Hence, the poten- 
tial conditions (4.12), (4.13) and the detailed balance condition (4.5) 
are equivalent for all systems which are described by Eq. (2.10) and 
the backward equation (2.12). 
The potential conditions (4.12). (4.13) impose severe restrictions on the 
coefficients { D ) ,  { J ) ,  and K i ,  of the Fokker-Planck equation (2.10). 
From Eq. (4.13) we obtain by differentiating 
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where the existence of K,'  is assumed. From Eq. (4.15) we obtain, by 
eliminating Wf with the help of Eq. (4.13), 

dJ i /dwi  - J i K , ' ( d K ,  J a w ,  - 2 0 , )  = 0 .  (4.21) 

Special cases of these conditions have already been discussed in the 
literature on stationary nonequilibrium systems [ 2 0 , 2 1 ] .  Their practical 
importance in laser theory has also been recognized [ 3 2 ] .  For systems in 
thermal equilibrium detailed balance is a general property. Hence. the 
potential conditions have always to be satisfied in equilibrium theory. 
In fact, a look at the general Fokker-Planck equations, derived for sys- 
tems near thermal equilibrium, confirms that the potential conditions are 
satisfied by the drift and diffusion coefficients of these equations [33,  341. 

4.3. Consequences of the Potential Conditions 

The meaning of Eqs. (4.12) - (4.17) is analyzed best by a comparison 
with the more general Eqs. (2.20), (2.22). First of all, we note that ( J ) ,  
defined by Eq. (4 .16) ,  is the drift velocity in the stationary state 

Since Ji transforms like wi (if time is reversed), Ji describes all reversible 
drift processes. The remaining part of K i  is given by Di and describes all 
irreversible drift processes. We find, thqrefore, that the general decomposi- 
tion of the total drift into two parts, as introduced in Eq. (2.22), coincides, 
in the presence of detailed balance, with the general decomposition of 
the total drift into a reversible and an irreversible part. The general result 
of the preceeding section can now be formulated as follows: 

Systems, described by Eqs. (2.10), (2.12) are in detailed balance in 
their stationary state, if apd only if the probability current in the stationary 
state is the reversible part of the drift. We note that. in detailed balance, 
cyclic probability currents are not forbidden altogether; only irreversible 
probability currents are not allowed. 

By introducing the potential conditions (4.1 2), (4.13), into the Langevin 
Eqs. (2.24) we obtain 

These equations show the close analogy which exists between systems 
near equilibrium and systems near stationary nonequilibrium states [ 3 0 ] .  
Eq. (4 .13)  is the analogue of the linear, phenomenological relations of 
irreversible thermodynamics [13]  between the "generalized forces", 
represented by the derivatives of 4" and the "generalized irreversible 
fluxes", represented by the irreversible drift. The potential @plays the 
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role of a thermodynamic potential, both, in its static and its dynamic 
aspects. The diffusion coefficients K i k  are the analogue of the coefficients 
in the linear relations between fluxes and forces. Eqs. (4.12) are the 
analogue of the Onsager-Casimir symmetry relations [35,  361 for these 
coefficients. 

The potential conditions (4.12), (4.13) have considerable practical 
importance, since Eq. (4.13) gives n first integrals of the time independent 
Fokker-Planck equation for Wf. These first integrals may be used in 
two different ways : 

i) It is possible to determine the stationary distribution 
Wf - exp(- 4" from Eq. (4 .13)  by the line integral 

if the drift and diffusion coefficients are known. Eq. (4.13) will be used 
in this manner in Section 8. 

ii) It is possible to determine the irreversible drift ( D ) ,  if the dif- 
fusion matrix K i k  and the stationary distribution W; are known. In 
this way it is possible to extract information on the dynamics of the 
system from the stationary distribution. This procedure is of importance 
in all cases in which symmetry arguments, like those of Section 3.2, are 
sufficient to obtain the stationary distribution and the diffusion matrix. 
We will use it in the applications of Sections 6 and 7 .  

In all cases of vanishing reversible drift, Ji = 0 ,  the quantity @and 
the diffusion coefficients determine both the dynamics and the stationary 
distribution. Eq. (4.13) is then a somewhat disguised form of the fluc- 
tuation dissipation theorem, since it gives the dissipative drift in terms 
of the fluctuations. It can be converted to the more usual form of the 
flucttiation dissipation theorem by considering the linear response of 
the variable wi to an external force, driving the variable w j .  The response 
is given by Eq. (3.35), if we take A j  to be the momentum which is canoni- 
cally conjugate to w j .  The response function is then given by 

d i j ( r )  = - ( w ~ ( T )  a4./awj> . 
By using Eq. (4 .13)  we obtain 

4 i j ( r )  = 2 ( K J ~ '  (4 - 4 a K k I / a w J  w i ( ~ ) >  . 

If we assume that K i j  is independent of ( w )  and use Eq. (4.23), we obtain 
the more familiar form 

4ij (r)  = - 2 ~ ~ i '  w k ( t  - T ) > / ~ T .  (4.27) 

In deriving Eq. (4.27) from (4.26) and (4.23) we made use of the fact 
that the fluctuating forces g i j  t j ( t )  in Eq. (4.23) give no contribution 
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in Eq. (4.26), since there, z is always positive and all correlations vanish. 
The results (4.26), (4.27) coincide with results obtained recently by Agar- 
wal [27]. 

In all cases of vanishing irreversible drift Di =0, Eq. (4.13) yields 
Ki,=O. In this case, the potential & cannot be determined from 
Eq. (4.13). It rather has to be determined from Eq. (4.15) in terms of 
the reversible drift {J}. In most cases the latter can be derived from a 
Hamiltonian H by splitting the variables {w} into pairs of canonically 
conjugate coordinates {u} and momenta {u} and putting 

In this case, our theory is formally reduced to equilibrium theory. The 
stationary distribution can be taken to be the canonical distribution 

Wf - exp ( -HIT) (4.29) 

where T is some fluctuation temperature in energy units. The fluctuation 
dissipation theorem (3.35) reduces to its equilibrium form. @=HIT 
determines both the dynamics and the stationary distribution completely. 

B. Application to Optics 

5. Applicability of the Theory to 0 h i c a l  Instabilities 

In the second part of this paper we consider threshold phenomena in 
nonlinear optics. Thresholds in laser physics and nonlinear optics mark 
the onset of instability of certain modes of the light field. In this section 
we consider some common features of these instabilities and discuss 
the relevance of the general part A for laser physics and nonlinear 
optics. In Section 5.1 we consider the validity of the basic assumptions 
and give a review of the quantities which connect the theory and photo- 
count experiments. In Section 5.2 we give an outline of the microscopic 
theory of fluctuations in lasers and nonlinear optics. This outline is 
necessary, since we will make use of the microscopic theory in Section 8. 
Furthermore, the results of the phenomenological theory in Sections 
6 and 7 will frequently be compared with results of the microscopic 
theory. In Section 5.3 we discuss the general analogy between instabilities 
in nonlinear optics and second order phase transitions. These analogies 
are a special case of the general connections between symmetry changing 
instabilities of stationary nonequilibrium states and second order phase 
transitions. The limits of this analogy, which are due to the geometry of 
optical systems, are also discussed. 

5.1. Validity of the Assumptions; the Observables 

Before applying the considerations of part A to optical examples, we 
have to check the validity of the basic assumptions and have to find the 
observables of photo-count experiments. 

a) The Assumptions 

i) Stationarity implies the time independence of all external influences 
on the system, on the adopted time scale of description. Hence, all 
parameters which characterize a given optical device, like temperature, 
distances and angles between mirrors, intensity and mode pattern of 
pump sources, have to be stabilized on that time scale. This stabilization 
presents experimental difficulties, which could be overcome for single 
mode lasers [lo]. For most other optical oscillators stabilization is 
more difficult, either because their mode selection mechanisms are less 
efficient (e.g. parametric oscillators), or because they depend more 
critically on properties of the pump (e.g. Raman Stokes oscillator). 
Nevertheless, recent technological progress [37] should make a stabiliza- 
tion of other oscillators, like parametric oscillators, over sufficiently 
long time intervals, possible. 

ii) The assumption of the validity of a Fokker-Planck equation can be 
split into the Markoff assumption and the diffusion assumption. In non- 
linear optics, a Markoff description is usually provided by the amplitudes 
of the optical modes and the variables of the medium which account for 
the nonlinear interaction (cf. 5.2). In our phenomenological theory, the 
variables, which are used to describe the system, are the amplitudes of 
the unstable modes alone. Whether this restriction of the number of 
variables is justified or not depends on whether the system is sufficiently 
close to the instability, since the lifetime of the fluctuations of the un- 
stable mode amplitude becomes large in the vicinity of the instability. 
The necessary number of variables also depends on the time scale of 
observation, which is determined by the rise time of the photo diode 
( -  lop9 sec) of the detector. Theoretical [38] and experimental [39] 
investigations of a possibly non-Markoffian behaviour of the single 
mode laser amplitude on the n sec time scale have been made. Experimen- 
tally, non-Markoffian effects have not been observed. Hence, the Markoff 
assumption seems to be well justified, at least for single mode instabilities. 

The diffusion approximation can generally be justified for all optical 
modes with sufficiently high intensities. Fluctuations in optical modes 
are due to processes which involve the creation and annihilation of 
single light quanta. Jumps of the quantum number by f 1 can be approx- 
imated by a continuous diffusion, if the total quantum number is 
sufficiently large. 
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Together with the Fokker-Planck equation, we introduced natural 
boundary conditions in part A. Their physical basis in nonlinear optics 
is the condition, that infinite field amplitudes occur with probability zero. 

iii) In most optical applications we will restrict ourselves to systems 
with detailed balance. This assumption can be justified on general 
grounds only for special cases, most importantly the single mode laser 
treated in 6.1. In all other cases, it implies a restriction to special systems, 
whose parameters are chosen in such a way, that detailed balance is 
guaranteed. The potential conditions (4.12), (4.13) are a convenient 
tool to decide whether a system is in detailed balance or not. 

b) The Observables 

In most experiments of laser physics and nonlinear optics the interesting 
observables are the intensities of the light modes. Furthermore, the 
stability of the state of the system, i.e. the reproducibility of the results, 
is of interest. Theoretically, this information is provided by the descrip- 
tion which neglects fluctuations, i.e. by the set of Eqs. (3.4). As was shown 
in Section 3, the symmetry changing instabilities have the most drastic 
effects on this level of description. They manifest themselves by a dramatic 
increase in the intensity of the instable mode, if treshold is passed [ I l l .  
In 3 it was also shown that the location of the minima of @ and the 
drift velocity {r'} determine the size of the stationary intensities and 
their stability. 

In the last few years a growing nudber of experimentalists have been 
concerned with the statistical properties of the emitted light. Both the 
theoretical and the experimental details of their measurements have 
been the subject of many papers [8, 10, 18, 191. Therefore, we restrkt 
ourselves to a brief survey here. The quantity, which is on the basis 
of our phenomenological theory, is the stationary distribution of the 
mode amplitudes. It is 'closely connected with the most fundamental 
quantity for photo-count experiments, the stationary photo-count 
distribution p(n, T, t). It gives the probability of counting n photoelectrons, 
which are generated by the light field in a photodiode within a given 
time interval T a t  time t. The photo-count distribution p(n, T, t) depends 
on the statistical properties of the light field, since it is determined by 
averaging over a Poisson distribution 

p(n, T, t) = (n !- ' E(T, t)" exp( - E(T, t))) (5.1) 
whose mean value ?i is proportional to the average of the light intensity 
I(t) C403 
- I + T  

n(T, t) = a j I(tl) dt'. (5.2) 
I 

a gives a measure of the efficiency of the counting method. The average 
in (5.1) has, in general, to be taken with a probability density which is 
a functional of the intensity I(tl) for all times t 5 t' 5 t + T. However, 
if the interval T (which is determined by the rise time of the photodiode) 
is much shorter than the time scale on which I(t) varies, Eq. (5.1) may be 
reduced to 

The measurement of p(n, t) gives an indirect determination of Ws. 
Ws can also be characterized by its normalized moments ( I (~ )~ ) / ( l ( t ) )~ .  
They are given in terms of the normalized factorial moments dk) of the 
photo-count distribution, 

dk'(T, t) - (n) -k 1 n !(n - k) ! - ' p(n, T, t) , (5.4) 
n 

by the relation 

Usually, a comparison of the theoretical and experimental results for 
the first few moments is used, to fit the unknown parameters in Ws. 
Increasing the accuracy in the determination of the distribution p(n, T, t) 
means to increase the number of known normalized factorial moments 
dk). Thereby one increases the number of known normalized moments of 
W;, and hence, the precision with which W; is known. Therefore, photo- 
count experiments can test @ over the whole configuration space, 
whereas intensity measurements can only contain information on the 
(sharp) minima of @. 

Similar to single photo-count distributions one can measure joint 
photo-count distributions by determining the number of photoelectrons 
generated at different times. They provide an experimental method to 
determine the joint probability densities, introduced in Eq. (2.2). In 
most cases, however, one is content with the measurement of the lowest 
order moments of the joint distributions. This is done, e.g., in Hanbury- 
Brown Twiss experiments [41]. There, the photocurrents, produced 
in two or more photodetectors, placed in different space-time points 
(e.g. by beam splitters and electronic delay), are electronically multi- 
plied and averaged over a time interval. In this way one is able to measure 
multi-time correlation functions, e.g. the autocorrelation function 
(I(t + t )  I(t)) - ( I (C))~ ,  or cross-correlation functions like (I,(t + t )  I,(t)) 
- (I,(t)) (12(t)), if more than one mode of the electromagnetic field 
is excited. These quantities contain information about the dynamics of 
the system (e.g. relaxation times, fluctuation intensities). They can be 
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calculated, either by the microscopic theory, which is reviewed in the 
next section, or by the phenomenological theory. While the microscopic 
theory i:s too involved to be applied to complicated problems, the pheno- 
menological theory can also be applied to more complicated situations, 
but is then restricted to cases where detailed balance is present. 

5.2. Basic Concepts of the Microscopic Theory 

The general procedure of the microscopic theory is shown in a block 
diagram in Fig. 9. It was originally developed for the analysis of lasers 
(cf. [8]). Later, it was shown that the same procedure can be used in 
nonlinear optics. The starting point is a Hamiltonian which contains 
the following dynamical variables (operators): 

i) The amplitudes of the electromagnetic field modes, described by 
boson creation and annihilation operators, 

ii) the operators, describing the atoms of the medium, which obey 
anticornmutator relations, 

iii) a number of operators, describing incoherent pumping of the 
atoms of the field modes (e.g. in lasers), as well as dissipation and fluctua- 
tion due to the coupling to a number of thermal reservoirs, and 

iv) c-number forces, describing external, coherent pumping (e.g. in 
parametric oscillators or Raman oscillators). 
The approximations, which are usually made when the Hamiltonian is 
specified, are I, 

i) the self consistent restriction of the field operators used, to the 
modes of the electromagnetic field which are strongly excited in the 
particular process under con~ideration,~ 

ii) the neglect of all interactions between the elementary excitations 
of the medium ("atoms"), except for the interaction mediated by the 
electromagnetic fields, 

iii) restriction to resonant one-quantum processes for the interaction 
between light and matter (i.e. the dipole approximation and the rotating 
wave approximation). 

Knowing the Hamiltonian one can write down the von Neumann 
equation of motion for the density operator of the whole system including 
the reservoirs. The main part of the theory consists now in a sequence of 
steps which simplify this equation, until it can be solved. 

The first step is the elimination of the reservoir variables, which is 
most elegantly achieved by an application of Zwanzig's projector 
techniques, combined with a weak coupling approximation, and a 
Markoff assumption [43]. The latter implies that the correlation times 

The only exemption to this rule, known to the author, is the interesting work of 
Ernst and Stehle [42]. 

Hamiltonian including 
modes, atoms, reservoirs 

t 
Von Neumann equation for 
density operator of total system 

Elimination of reservoirs 

Equation for reduced density operator 
including modes, atoms 

Elimination of atoms 

Equation for reduced density operator 
including modes 

Adiabatic elimination 

Equation for reduced density operator 
including instable modes 

C-number representation 

Equation for quasi-probability density 
of the form (2.5) 

diffusion approximation 
classical limit 

Fokker-Planck equation (2.10) 

t 
Probability densities, 
moments, correlation functions 

Fig. 9. Scheme of the microscopic theory 

of the reservoirs are very short compared to all remaining time constants. 
As a result one obtains a "master equation" for the density operator 
in the reduced description, which contains the field modes and the 
variables of the medium. The reservoirs are now represented by a set 
of given external forces, described by time-independent parameters {A} 
and a set of damping and diffusion constants. The latter are connected 
by some fluctuation-dissipation relations which depend on the various 
reservoir temperatures. 
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The next step is the elimination of all variables which do not parti- 
cipate in the interaction with resonant real processes, but rather with 
nonresonant virtual processes. Usually the atomic variables play this 
role in nonlinear optics. This elimination can be achieved by a method 
described in [44], which is equivalent to an approximate unitary trans- 
formation. The remaining equation for the reduced density operator 
then describes only resonant interaction processes, whose coupling con- 
stants are obtained by the foregoing elimination process. 

In the next step one makes important use of the fact that fluctuations 
are most important near thresholds, or instabilities. At these instabilities 
the inverse relaxation time of one of the modes becomes very small and 
changes sign. Hence, in the vicinity of an instability, there exists a number 
of variables which move slowly compared to all remaining variables. 
The latter may be eliminated by assuming that they are in a conditional 
equilibrium with respect to the slow variables (adiabatic approximation). 
The procedure is similar to the elimination of the reservoirs. The only 
difference is the necessity of also including higher order terms in the 
weak coupling expansion, in order to get finite results at threshold 
(for the example of the single mode laser see [38]). The remaining equa- 
tion for the density operator of the once more reduced system holds 
only in the vicinity of the particular instability which is considered. 

In the next step an additional simplification is achieved without 
further approximation by the introduqtion of a quasi-probability density 
representation for the density operatdr lo (for references cf. [8]). In this 
representation all operators are replaced by c-number variables. The 
equation, which finally emerges from this procedure has the structure 
of Eq. (2.5). 

The final simplification is the introduction of the diffusion approxima- 
tion. Fluctuations change the quantum numbers of the modes by + 1. 
For modes with large average quantum numbers Ti, the fluctuations 
may be represented by a continuous diffusion. It is important that 
this approximation is made only at the end of the foregoing procedure, 
since, at the beginning, weakly excited degrees of freedom are also 
contained in the Hamiltonian. 

The same argument which justifies the diffusion approximation can 
be used to apply the correspondence principle and take the classical 
limit of the final equation of motion. In this limit, the quasi-probability 
density is reduced to an ordinary probability density, as introduced in 
2.1. By the procedure outlined above, a Fokker-Planck equation of the 
form (2.10) is obtained, which now has to be solved. Although this is 
a classical equation, it still describes quantum effects, since the fluctua- 

' O  T h ~ s  step could also be done before the e l~mlna t~on  procedure 

tions have a pure quantum origin. The fluctuations represent the small 
but measurable effects produced by the spontaneous emission process, 
which is conjugate to the stimulated process giving rise to the instability. 

The advantage of the microscopic theory is the possibility to derive 
the drift and diffusion coefficients from first principles. Its disadvantages 
are its complexity, which restricts its applicability to simple systems, 
and the necessity for the introduction of many different approximations. 
In fact, many results of the microscopic theory are completely indepen- 
dent of the special form of the initial Hamiltonian and are only due 
to the occurrence of a symmetry changing transition. This is the main 
message conveyed by the phenomenological theory. Some of the results, 
which are independent of the special form of the initial Hamiltonian, 
are discussed in the next section and compared with phase transitions. 

5.3. Threshold Phenomena in Nonlinear Optics and Phase Transitions 

This section is devoted to a comparison between phase transitions in 
equilibrium systems and threshold phenomena in nonlinear optics. Ana- 
logies of this kind have been pointed out previously for the laser [45,46] 
on the basis of the microscopic theory. Here, we discuss these analogies 
from a phenomenological point of view. We restrict ourselves to systems 
with detailed balance. Then the formal analogies between both classes 
of phenomena are obvious from the considerations in Sections 3, 4. It 
is sufficient to note that qY plays the role of a thermodynamic potential, 
both, in the static and in the dynamic domain, and that qY was con- 
structed in analogy to the Landau theory of second order phase transi- 
tions in Section 3.2. However, a discussion of the analogies in more 
physical terms seems to be useful in order to appreciate their extent 
and their limits. 

In both cases the basic instability arises from two competing pro- 
cesses. A phase transition" is determined by the competition between 
the thermal motion and a collective motion. The latter is caused by 
the interaction between the microscopic degrees of freedom, which, in 
the mean field approximation, is replaced by a nonlinear interaction 
of the microscopic degrees of freedom with a fictitious mean field. The 
nonlinear interaction gives rise to a positive feedback into a collective 
mode of the system. If the collective motion dominates, the mode be- 
comes unstable. Its amplitude grows to a finite value, which is the order 
parameter of the phase transition. Observable order parameters must 
have zero frequency, since modes with finite frequency necessarily 

l 1  A qualitative discussion of phase transitions. which is suitable for our purposes 
here, is given in [47]. 
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dissipate energy. At zero frequency thermal fluctuations are the 
dominant noise source. 

Optical instabilities are governed by a competition between loss and 
gain in certain modes. The gain is due to a nonli~ear interaction of the 
atoms (or elementary excitations) of the medium with the electromagnetic 
field, which plays the role of a mean field. However, contrary to the 
latter, the electromagnetic field is not fictitious. The characteristic length 
of the interaction is much longer in optical system (- l m) than 
it is in systems with fictitious mean fields, where it is a microscopic 
quantity. 

The mode, which becomes unstable by a feedback mechanism similar 
to the one before, has a finite frequency. This is possible, since the energy 
dissipation in this mode can be compensated by a stationary energy 
flow into the system. Thermal fluctuations are unimportant at optical 
frequencies. Instead, spontaneous emission processes are the main 
source of fluctuations. 

In both cases, the instable mode of the system, if quantized, has to 
be a boson mode, because otherwise no positive feedback into this 
mode would be possible. 

An important difference between usual phase transitions and optical 
instabilities comes from the difference in spatial dimensions. Optical 
devices have in most cases a one-dimensional geometry, and even the 
lengths in this single dimension are usually short compared to the co- 
herence length of the electromagnetic field. Thus, the analogy has to 
be restricted to one and zero dimensional systems. In 3-dimensional 
systems the coherence length of the order parameter fluctuations diverges 
at the critical point. In the case of a continuous broken symmetrjl, 
the order parameter fluctuations contain an undamped zero frequency 
mode (Goldstone mode), which displaces the order parameter around a 
fixed, stable value, which breaks the symmetry. In 1 and 0-dimensional 
systems the order parameter fluctuations contain a damped zero fre- 
quency mode (diffusion mode), which carries the order parameter through 
a whole set of values, thereby restoring the symmetry [12]. The latter 
phenomenon takes the form of a phase diffusion in nonlinear optics. 
Besides this diffusion mode, there occur also fluctuations in the absolute 
value of the order parameter. These fluctuations are known to show a 
drastic slowing down in the vicinity of the critical point, because of the 
close matching between thermal and collective motion near that point 
C481. Slowing down is also found near optical instabilities, where it is 
due to a close matching between the loss and the gain. At threshold, the 
total loss rate is equal to the sum of the gain by induced emission and 
the spontaneous emission rate. The spontaneous emission rate is smaller 
than the induced emission rate by a factor lp, where Ti is the mean number 

of quanta in the mode. If Ti would be infinite, a complete matching 
between loss and gain would be achieved at threshold and the slowing 
down would be critical [49]. 

In general, the slowing down decreases the decay rate of order 
parameter fluctuations at threshold up to a small but finite value, which 
is proportional to 1/E. 

6. Application to the Laser 

The general theory of part A is applied to the analysis of fluctuations 
of lasers in various operation modes. The example of the single mode 
laser, treated in 6.1, exhibits, in the simplest way, the general features 
outlined in part A. As this example has also been studied most carefully 
by experiments, it has to be considered as a prototype for the more 
complex examples studied in the later sections. In Section 6.2 we apply 
our theory to multimode operation in cases where mode coupling is 
only due to the intensities of the various modes, and no phase coupling 
is present. The systems treated in the Sections 6.1 and 6.2 represent 
examples with detailed balance. In Section 6.3 the case of multimode 
operation with phase coupling by various mechanisms is considered. In 
the case of self-locking, detailed balance is, in general, not present, 
due to irreversible cyclic probability currents through states with 
different relative phase angles of the modes. These currents make the 
analysis much more difficult, and only the simplest cases have been 
considered. The same applies to examples where phase interaction is 
forced from outside. However, some models, which are discussed in 
the literature, have the detailed balance property. Therefore, they may 
be analyzed by our methods. 

In Section 6.4 we consider a system with one spatial dimension, 
the light propagation in an infinite laser medium. Two different states 
of the system are considered: 

i) We treat the state which is most similar to single mode operation, 
but includes spatial fluctuations of the mode amplitude. This example 
shows most clearly, that a complete analogy to one-dimensional systems 
with complex order parameters exists (e.g. one-dimensional supercon- 
ductors). The microscopic derivation of these results [46] originally 
suggested the development of a phenomenological theory, based on 
symmetry. 

ii) We treat the state in which a periodic sequence of short pulses 
travels in the medium. The phenomenological theory is applied in order 
to show, how fluctuations (i.e. spontaneous emission) destroy periodicity 
over long distances. 
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6.1. Single Mode Laser 

We consider a single mode of the electromagnetic field in resonance 
with externally pumped two-level atoms. The microscopic theory of this 
problem has been completely worked out since 1964 [50, 83. Never- 
theless we include this case in our analysis, because it exhibits most 
clearly the basic line of reasoning. 

The threshold of laser action marks an instability of a mode of the 
electromagnetic field, whose electric fieldstrength we may write as 

E(x,t)=(Bexp-iw,t+B*expiw,t)  f ( x ) .  (6.1) 

In (6.1) o, is the laser frequency, which we assume to coincide with the 
atomic frequency, f ( x )  is the normalized spatial pattern of the laser 
mode (running or standing wave), and B is the complex mode amplitude. 
Our general set of variables { w )  is formed by 

{ w I  = ( ~ 1 ,  w Z I  = {Re B, Im B> . (6.2) 

The time reversal transformation behaviour of w,, w ,  may be derived 
from Eqs. (6.1), (6.2) by noting that the electric field strength remains 
invariant. Hence, we find 

i t , = w , ,  i t ,=-w, .  (6.3) 

The external force I ,  which keeps the system sufficiently far from thermal 
equilibrium, is supplied by the mechanism which inverts the electronic 
population of the two atomic levels phrticipating in laser action. 

Now we determine the potential @(w,  , w,) from symmetry arguments. 
It has to be invariant against changes of the phase angle of the complex 
mode B. In the completely symmetric state we have dl = 4 = 0. Hence 
the quantities { A d ( { I } ) )  defined in Eq. (3.21) are given by {w', , w',). The 
potential @ is now obtained as a power series in {w, ,  w,) containing 
only invariants formed 'by these quantities. The only invariants up to 
fourth order, which can be formed by these quantities, are (w: + w:) 
= lBIZ and (w: + w:)'. Hence we obtain 

@ = - a(w: + w:) + b(w: + w:),. (6.4) 

The coefficient of the second order invariant has to change sign at 
threshold. Hence, we may put 

I ,  is the threshold value of the pump parameter I .  Since @ must have 
a minimum at w ,  = w,  = 0 for I <I , ,  we have a > 0. The forms of @ 
for I >< I ,  are shown in Figs. 4, 5 respectively. The results (6.4), (6.5) are 
in complete agreement with the results obtained from the microscopic 

theory [51, 19,8]. They are of central importance for the photon statistics 
of the single mode laser and have been checked experimentally with 
great care [52,10]. Complete agreement between theory and experiment 
has been obtained. 

In the next step, we derive the equation of motion (2.10). We assume 
that the diffusion matrix can be taken as independent of w,, w,. Because 
of phase angle invariance its only possible form is then 

where q is another phenomenological constant. By applying Eq. (2.22) 
we obtain 

K . = - -  t :q a @lawi+< (6.7) 

where < has to satisfy the equation 

a < e x p ( - @ ) / d w i = o .  (6.8) 

Since the first term in Eq. (6.7) is a power series in { w )  we may also 
expand < as a power series. Observing phase angle invariance and the 
condition (6.8), we obtain 

ri, 2 =(a1 - 26' IBI2) wz, 1 (6.9) 

where a', 6' are two real constants. Eq. (6.9) shows, that {r') transforms 
like {w) and, hence, is a reversible drift. On the other hand { q  d@/dw) 
transforms like { w )  and is the irreversible part of { K ) .  As was proven 
in section (4.3) this is equivalent to the condition of detailed balance. 

Since the reversible drift J , , ,  = <,,, as given by Eq. (6.9), changes 
only the phase angle of B and leaves JBIZ unchanged, it describes detuning 
effects. Since we assumed exact resonance between the atomic transition 
and the mode B of the field, we may put a' = 6' = 0. The complete Fokker- 
Planck equation (2.10) now reads 

d P / d ~  = - (d/dw, q(a - 2blB)2) W ,  P)  - (d/dw, q(a - 2bIBIZ) w,P) 
(6.10) + + q ( a z p / a ~ :  + aZp/aw:) . 

This result is again in complete agreement with the result of the micro- 
scopic theory [51] and with all experimental data obtained so far. The 
phenomenological parameters q, a, b are determined experimentally as 
follows [19]:  qa as a function I is obtained by fitting the experimental 
and theoretical results for the dimensionless quantity 

(IBI4>/I(B>IZ= ( n Z )  - (n)l(n) '  (6.11) 

for different values of I .  



The right hand side of Eq. (6.11) contains moments of the photocount 
distribution (cf. Eqs. (5.4), (5.5)) which are accessible experimentally. 
The values of q and b are determined by measuring the average number 
of photons, (JflJ:), and the linewidth of the intensity fluctuations, l/zIC, 
at threshold. These quantities determine b and q by the relations [53] 

(lal:) = ( ~ b ) - l / ~ ;  i/zIC = q . fi. 5.854. (6.12) 

For a detailed presentation of the results obtained by the evaluation of 
Eq. (6.10), we refer to [53, 19, 81. In Fig. 10 we show the results for the 
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i-6 
Fig. 10. The correlation times of amplitude fluctuations (T,) and intensity fluctuations 
(.r,) as calculated from Eq. (6.10) in [53] (note the different scales for T~ and T,) 

correlation times zp and z, of the fluctuations of the amplitude fl and 
the intensity la12, respectively [53]. They show very clearly the slowing 
down which is predicted for a symmetry changing transition. 

The phenomenological approach to laser theory was recently used 
by Grossman and Richter [54] - [56] to analyze the dynamics of lasers 
by a method which circumvents the use of Fokker-Planck equations. 
Their procedure runs as follows [54] : 

i) The potential (6.4) is extended to include a "kinetic energy" term - (w; + w;) = lj12 

The new constant d has to be positive for normalization. 
ii) The expression (6.13) is used as a Hamiltonian to generate equations 

of motion for the amplitude fl. These equations are then modified by 
adding phenomenological damping terms. 
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iii) In order to determine correlation functions of the form 
(Fl(fl(t)). F,(fl(t,))), the equation of motion for F,(fl(t)) is solved with 
the initial condition fl(to) = Po. The result is multiplied by F,(fl,) and 
averaged over Po with the distribution Wi - exp(- @). 

The same procedure is well known for systems in thermal equilibrium 
[ l q .  The steps ii) and iii) amount to a replacement of the Fokker-Planck 
equation by a suitable simplified set of moment equations. Besides this 
simplification, the most important difference to our procedure seems 
to be the fact that, in the treatment [54, 561, the main motion of the 
system is derived from a Hamiltonian and describes reversible processes 
whereas in our formulation the whole motion (besides detuning) was 
described by irreversible processes. Nevertheless, this procedure is 
equivalent to ours, apart from the additional approximations which 
are introduced by using simplified moment equations instead of the 
Fokker-Planck equation. We show this by deriving a Fokker-Planck 
equation from the potential (6.13) in the same way as before. Our new 
set of variables is now 

They obey the equations 

from which we obtain the drift and diffusion coefficients 

The diffusion matrix is taken to be constant and to preserve phase angle 
invariance. Then, it must take the form 

For the drift coeflicients K,,, we obtain from Eq. (2.22) 

K 3 , 4 =  -3qZd@/dw3,d+G,4. 

From Eq. (2.20) we obtain 

If we determine G,, by a power series in {w) which contains w,,? to 
the first order and w,, , to the third order, (the accuracy being determined 
by the accuracy of 6") and determine the coefficients of this expansion 
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by Eq. (6.19), we obtain 

6 = d o  w4 - i d - '  a@/aw,, 

r",= - A o w 3 - ~ d - ' a @ / a w 2 ,  

where d o  is a real constant describing detuning effects. Neglecting 
detuning we take d o  = 0. Eqs. (6.15), (6.20), (6.21) show that {P} transforms 
like a reversible drift. Therefore, detailed balance is present (cf. 4.3). 
The same equations show, that the potential (6.13), in fact, acts as a 
Hamiltonian for generating the reversible drift {J} = {P}. The irreversible 
drift consists of a linear phenomenological damping term. From Eq. (6.21) 
we obtain the Fokker-Planck equation 

Its stationary solution is, of course, given by Eq. (6.13) with 
Wf - exp(- @). A method, which allows us to find the time dependent 
solutions of Eq. (6.22) if the solutions of Eq. (6.10) are known, is described 
in [20]. Eq. (6.10) is, of course, obtained from Eq. (6.22), if w,, w4 are 
eliminated as rapidly relaxing variables by an adiabatic approximation. 
The parameter q of Eq. (6.10) is then ekpressed in terms of the two param- 
eters q,, d of Eq. (6.22) by q = (q2d2)-'. 

6.2. Multimode Laser with Random Phases 

We now generalize the considerations of the preceding section to include 
the case of an arbitrary number of simultaneously excited modes. We 
assume that the mode amplitudes vary much more slowly in time than 
the atomic variables of the laser medium, whose characteristic times are 
given by the pumping time and the atomic relaxation times. Thus, the 
variables {w} are the complex mode amplitudes By. Furthermore, we 
assume that the laser operates in a region where the phases of all modes 
are independent from each other. Experimentally, this is a well known 
operation region. 

The potential 4 7 s  given by the expansion ' 

if we restrict ourselves to moderate field strengths. The constants a, 
and 

are real constants. In order to meet the natural boundary conditions 
for W;, at least one of the inequalities 

must hold. The coefficients a, change sign, if the intensity of the external 
pump, described by the parameter A, passes the threshold value A,. 
A, gives the threshold of mode v in the absence of all other modes. There- 
fore, we may put 

with positive constants a,. An expression of the form (6.23) has also been 
obtained from the microscopic theory [57], and was used in [56] to 
investigate the dynamics of a two-mode laser. The shape of the potential 
(6.23) may take on quite different forms depending on the relative size 
of the various coefficients. Some typical cases for two modes are shown 
in Figs. 11-14. Well below the threshold of the first mode W; - exp(- 6) 
is a multi-dimensional Gaussian, centered around /3, = 0 (cf. Fig. 11). 
Passing through the threshold of the first mode, the Gaussian becomes 
first very broad and finally the term b,, (/3,14 in Eq. (6.23) has to be 
taken into account in order to determine the form of Wi (cf. Fig. 12). 
If the pumping is further increased, the second mode could pass the 
threshold, if it were not suppressed by the presence of the first mode 
(cf. Fig. 13). For sufficiently hard pumping the second mode will finally 
start oscillating at a threshold which is determined by the bare threshold 
of the second mode and the intensity of the first mode (Fig. 14). The 
next modes will show a similar behaviour. 

The form of the potential (6.23) can be tested experimentally by 
photocount experiments in which photons coming from different modes 
are counted separately. 

In order to derive equations of motion from the potential (6.23) we 
assume that detailed balance holds in the stationary state. The physical 
meaning of this assumption will be considered later. The diffusion matrix 
is assumed to be diagonal with respect to different modes. Furthermore, 
it is assumed to be constant and to preserve the phase angle invariance of 
the modes. Applying Eq. (4.23) to the potential (6.23), we obtain 

l 2  The summation convention is dropped in the following. 
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Fig. 11. The potential (6.23) for two modes below threshold (a,, a, <O; a, =+a, ;  schematic 
plot) 

Fig. 12. The potential (6.23) for two modes. One mode ( B , )  is above threshold, the other 
mode is below threshold (a, > 0; a, <O; a, = - a  a,; schematic plot) 

Fig. 13. The potential (6.23) for two modes. One mode (0,) is above, the other mode is 
below threshold. The second mode is suppressed by the first mode (a,, a, >O; schematic 
plot) 

l S I l  

Fig. 14. Contour line plot (schematic) of the potential (6.23) for two modes above threshold 

with 

<Fv) = 0 ,  

<F,?Yt) FV4t + 7 ) )  = 29,  a,,, a (r )  , (6.28) 

<Fv(t) Fv,(t + 7 ) )  = 0 .  
The reversible drift Jv may be written as a power series in the amplitudes 

Jv = - i A o v  Pv - i 1 QVv. IPv,l2 Pv (6.29) 
v' 
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Qvv, and d o ,  are found to be real, if the time reversal symmetry and 
the phase symmetry is used. d o ,  and Qvvf describe frequency shifts 
due to the linear response and to nonlinear saturation effects. Eq. (6.24) 
represents a power series expansion of jv in terms of the mode amplitudes 
up to the third order. This expansion is general, apart from the restriction 
to complete phase symmetry and apart from the symmetry relation (6.24). 
Thus, Eq. (6.24) is the necessary and sufficient condition for the validity 
of detailed balance in the present example. From Eq. (6.27) we realize 
that the quantity - qv bvv, 1 ~ v 1 2  IBV.l2 has the physical meaning of an in- 
duced normalized transition rate from v' to mode v. Since the coefficients 
for induced emission and absorption are equal, the normalized transition 
rate in the opposite direction has to be equal 

Therefore, the symmetry relation (6.24) holds, if 

i.e., if the intensity of the fluctuating forces is equal for all modes. In 
general, this intensity is due to spontaneous emission into the modes. 
Eq. (6.31) is satisfied, if the spontaneous emission is, at least approxi- 
mately, constant over the spectral region of the modes. An explicit 
treatment'of two-mode oscillation unqer the same assumptions was given 
in [56]. 

We now consider in somewhat more detail the states which are 
described by the potential (6.23). Neglecting fluctuations, the stationary 
states are obtained by aqP/aBv = 0. This yields 

from which we determine the mode intensities, and the threshold values A 
at which new modes start their oscillation. The intensities of all modes 
below threshold are zero. For the intensities of the modes above thresh- 
old we obtain 

where the sum runs over all modes above threshold. Each time when a 
new mode passes its threshold, a new term has to be added on the right 
hand side of Eq. (6.33). As a result, at each threshold, the intensities 
18v12 have a discontinuous derivative with respect to A. The pump in- 
tensity, which is required to carry mode v through its threshold if the 

modes 1 . . . (v - 1) are already above threshold, is obtained by putting 
lBv12 2 0 .  

This relation can also be used to determine the number of oscillating 
modes v, if A is given. The results of Section 3 may be used to decide 
whether the stationary state, described by Eq. (6.32), is stable. Since 
the reversible drift (6.29) and the potential (6.23) satisfy Eq. (3.9), 
qP - Fmin is a Lyapunoff function of Eq. (6.27) (the fluctuations Fv are 
still neglected).The trajectories in the stationary state obey the equations 

and are stable against all deviations from these equations since these 
deviations increase 6. This result is very easily obtained here and 
agrees with the less general and more complicated linear stability analysis 
of the microscopic theory [58]. We now also take into account the 
fluctuations described by Eq. (6.23), by analyzing the threshold behaviour 
of mode v under the condition, that the modes 1 . .  . v - 1 are above 
threshold already. In the vicinity of its threshold, mode v will have 
fluctuations with much longer life time than the fluctuations of the 
other modes. Therefore, we replace the intensities of all other modes 
by constant parameters I,, and obtain 

v -  1 

F = - (av - 2 C bvvr I.,) IPv12 + bvv B V l 4  . (6.36) 
v ' =  1 

This potential has the same form as the potential of a single mode laser. 
The presence of the v - 1 other modes manifests itself only in the shift 
of the threshold value, as discussed in Eq. (6.34). Hence, each single 
instability leading to a new mode is very similar to the single mode 
case. This result is quite general and depends only on the condition 
that the thresholds of different modes are well separated from each 
other. 

We close this section by pointing out an interesting analogy between 
the present example of multimode laser action and turbulence in hydro- 
dynamics. The onset of turbulence has been analyzed by Landau [59] 
as a succession of instabilities of different modes of the velocity field 
with independent phases. Each instability brings in a new randomly 
phased mode of higher frequency and smaller wavenumber and increases 
the number of arbitrary phases by 1. The resulting motion is highly 



56 R .  Graham: Statistical Theory of Instabilities in Stationary Nonequilibrium Systems 57 

Qvvr and d o ,  are found to be real, if the time reversal symmetry and 
the phase symmetry is used. d o ,  and Q,,, describe frequency shifts 
due to the linear response and to nonlinear saturation effects. Eq. (6.24) 
represents a power series expansion of 8, in terms of the mode amplitudes 
up to the third order. This expansion is general, apart from the restriction 
to complete phase symmetry and apart from the symmetry relation (6.24). 
Thus, Eq. (6.24) is the necessary and sufficient condition for the validity 
of detailed balance in the present example. From Eq. (6.27) we realize 
that the quantity - q, by,, 1 & 1 2  1fiv.12 has the physical meaning of an in- 
duced normalized transition rate from v' to mode v. Since the coefficients 
for induced emission and absorption are equal, the normalized transition 
rate in the opposite direction has to be equal 

Therefore, the symmetry relation (6.24) holds, if 

i.e., if the intensity of the fluctuating forces is equal for all modes. In 
general, this intensity is due to spontaneous emission into the modes. 
Eq. (6.31) is satisfied, if the spontaneous emission is, at least approxi- 
mately, constant over the spectral region of the modes. An explicit 
treatment'of two-mode oscillation under the same assumptions was given 
in [56]. 

We now consider in somewhat more detail the states which are 
described by the potential (6.23). Neglecting fluctuations, the stationary 
states are obtained by aq5s/aBv = 0. This yields 

from which we determine the mode intensities, and the threshold values A 
at which new modes start their oscillation. The intensities of all modes 
below threshold are zero. For the intensities of the modes above thresh- 
old we obtain 

where the sum runs over all modes above threshold. Each time when a 
new mode passes its threshold, a new term has to be added on the right 
hand side of Eq. (6.33). As a result, at each threshold, the intensities 
1fiv12 have a discontinuous derivative with respect to A. The pump in- 
tensity, which is required to carry mode v through its threshold if the 

modes 1..  . (v - 1) are already above threshold, is obtained by putting 
IBv12 2 0 .  

This relation can also be used to determine the number of oscillating 
modes v, if A is given. The results of Section 3 may be used to decide 
whether the stationary state, described by Eq. (6.32), is stable. Since 
the reversible drift (6.29) and the potential (6.23) satisfy Eq. (3.9), 
6 is a Lyapunoff function of Eq. (6.27) (the fluctuations F, are 
still neglected).The trajectories in the stationary state obey the equations 

and are stable against all deviations from these equations since these 
deviations increase 6. This result is very easily obtained here and 
agrees with the less general and more complicated linear stability analysis 
of the microscopic theory [58]. We now also take into account the 
fluctuations described by Eq. (6.23), by analyzing the threshold behaviour 
of mode v under the condition, that the modes 1 ... v - 1 are above 
threshold already. In the vicinity of its threshold, mode v will have 
fluctuations with much longer life time than the fluctuations of the 
other modes. Therefore, we replace the intensities of all other modes 
by constant parameters I,, and obtain 

This potential has the same form as the potential of a single mode laser. 
The presence of the v - 1 other modes manifests itself only in the shift 
of the threshold value, as discussed in Eq. (6.34). Hence, each single 
instability leading to a new mode is very similar to the single mode 
case. This result is quite general and depends only on the condition 
that the thresholds of different modes are well separated from each 
other. 

We close this section by pointing out an interesting analogy between 
the present example of multimode laser action and turbulence in hydro- 
dynamics. The onset of turbulence has been analyzed by Landau [59] 
as a succession of instabilities of different modes of the velocity field 
with independent phases. Each instability brings in a new randomly 
phased mode of higher frequency and smaller wavenumber and increases 
the number of arbitrary phases by 1. The resulting motion is highly 
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irregular and is quasi-periodic. In our example we also have a succession 
of instabilities, each introducing a new arbitrary phase. The total electric 
field is given by the expansion 

where fv(x) are the resonator modes and ov are the resonator frequencies. 
Each term in Eq. (6.37) contains an arbitrary phase. The total field 
E(x, t) is quasi-periodic and consists of a statistical sequence of fluctua- 
tion pulses [60]. 

6.3. Multimode Laser with Mode-Locking 

In many cases, different laser modes are coupled, not only by their 
intensities, but also by their phases. This coupling generally occurs 
when satellites of laser modes, which are in resonance with neighbouring 
modes, are created by external or internal modulation [8]. Due to the 
phase coupling the different modes interfere and produce periodic pulse 
trains. If the frequency difference between the phase-coupled modes is 
small, one may obtain a "frequency locking", i.e., a composite oscilla- 
tion of the mode and its satellite with equal frequency. Typical examples 
of frequency locking occur in lasers with Zeemann splitted transitions 
[61], or in lasers with a coupling between the axial and the closely 
neighbouring nonaxial modes (e.g. d& to spatial inhomogeneities, cf. 
[62]). We start by making the same general assumptions as in the 
beginning of 6.2. In particular we assume that the dynamics is completely 
described by the mode amplitudes. Furthermore, we restrict ourselves 
to the case of moderate amplitudes, so that we may expand @ in powers 
of the mode amplitudes. Averaging over times which are long compared 
to an optical period we obtain 

where higher order terms were neglected. We note that the products 
occurring in Eq. (6.38) have to be time-independent in order to survive 
the lime average. Therefore, we have resonance between the interacting 
modes with frequencies dov 

Furthermore, the frequencies occurring in the first term of Eq. (6.38) 
have to coincide with the frequencies of the external forces. The poten- 
tial (6.38) has a number of phase symmetries, since the phases of the 
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modes have to fulfill the relations 

(Pv + (PvO = 2nn (n, m integers) 
( P V ,  + (PV,  + ( P v 3  + ( P v 4  = 2mn 

and are arbitrary otherwise. The coefficients a,,, and bvl v 2 v 3 v 4  in Eq. (6.38) 
have to fulfill the symmetry relations 

- * 
a v v o  - a v o v  , (6.41) 

- 
b V l V 2 v 3 v 4  - bvl V Z V 4 V 3  

- * (6.42) 
b V 1  V 2 V 3  v 4  - bv3 v 4  v 1  VZ . 
In the following we specialize Eq. (6.38) for different cases and make 
contact with the microscopic theory. 

a) Self-Locking of Phases 

In this case, no external force acts on the system, apart from the usual 
pump. The coupling between the phases of different axial laser modes is, 
in this case, due to the nonlinear mode interaction and must be contained 
in the 4th order terms of Eq. (6.38). Therefore we obtain 

Assuming detailed balance we may derive equations of motion by 
applying Eq. (4.23). We get 

flv = J, - qV a4slap: + F, . (6.44) 

Jv is obtained from the power series 

where, again, an average over times long compared to the optical period 
has been taken. The parameters do, and C..  . have to be real in order to 
give Jv the correct time reversal transformation behaviour. Furthermore, 
Eq. (6.45) implies the symmetry 

- 
c v V z V 3 V 4  - c v v 2 v 4 v 3 .  

From Eq. (4.1 5) we obtain 
- avCvvz v 3  v 4  - 4 4  C v 4  v 3  VZ v  . (6.47) 

Eqs. (6.42), (6.46), (6.47) are the conditions of detailed balance in the 
present case. These symmetry relations are much more restrictive in 
the present case than they were in the case of intensity coupling. The 
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comparison with the microscopic theory [57] shows that the symmetry 
relations are approximately fulfilled, if all modes lie sufficiently close to 
the center of the homogeneously or inhomogeneously broadened line, 
and if exact resonance between these modes exists. A considerable simpli- 
fication of the foregoing analysis is possible in all cases, in which the 
amplitudes rv of 

Pv = rv exp - icpv (6.48) 

can be considered as stabilized constants and only the motion of the 
phase qV has to be considered. In this case, Eq. (6.43) reduces to 

@ = C Bvlv2v3v4 COS((P~,  + (Pv2 - (Pv3 - (Pv4 - W v l  v2v3vq) (6.49) 
V l  v2 v3v4  

where 
- Bvl v2v3v4  - 2 lbvl v2v3v41 rvl rv2rv3rv4 (6.50) 

and 
- eXP - i ~ v ,  v 2 v 3 v 4  - bv1 ~ 2 ~ 3 ~ 4 ~ ~ ~ ~ 1 ~ 2 ~ 3 ~ 4 ~  . (6.51) 

The phases which are realized with maximum probability are obtained 
from the extremum principle 

An extremum principle of maximum gain has been introduced previously 
by intuition, in order to study phase locked lasers [63]. Our extremum 
principle (6.52), whenever it is applicable, is equivalent to this principle 
of maximum gain. As a specific example we consider the case of 3 inter- 
acting modes, which are tuned to satisfy Eq. (6.39) 

6 = 2 A 0 2 - d o l  - A o , = O  

From Eq. (6.49) we obtain 

where 

The distribution, given by Eq. (6.54) has also been obtained from the 
microscopic theory [57,64]. The equation of motion (4.23) derived from 
the potential (6.54) has the form 

A b = 6 + i A q  sin(Ay-yo)+F(t) 

with 
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The Langevin equation (6.56) has been analyzed previously in all detail 
[64]. We use this analysis to consider the consequences of a finite detuning 
6, which violates Eq. (6.39). The Fokker-Planck equation, corresponding 
to Eqs. (6.56), (6.57) has the stationary solution 

W;(Ay) = No exp[26Ay/q -A cos(Ay - v0)] 
A W +  2 n  (6.58) 

S .ex~C-26cplq+Acos(cp-vo)ld(P 
AW 

where No is a normalization constant. For S = 0 this solution is reduced 
to Eq. (6.54). Introducing this solution into Eq. (2.22), we obtain 

r'(Ay) = q[2N0 W;(Ay)]-' (1 - exp (-471 S/q)). (6.59) 

Eq. (6.59) shows, that 6 + 0  will induce a nonvanishing drift velocity 
in the stationary state. Hence, 6 = 0 is the condition for detailed balance 
in the present case. 

b) Forced Locking of Phases 

Mode locking can be forced by an external modulation of the losses or 
the gain. If the modulation frequency coincides with the difference in 
frequency of neighbouring axial modes, the gain of the generated satellite 
modes will depend on the phases of these neighbouring modes. Hence 
a phase coupling of modes with initially uncorrelated phases is produced. 
In this case, the most important phase coupling is already contained in 
the bilinear terms of Eq. (6.38). The phase coupling in the higher order 
terms is then of minor importance and is left aside here. @ has the form 

where at1' is real and is proportional to the external locking force. In 
order to see how at') leads to a locking of phases in the presence of 
many modes, we consider the index v as a continuous variable and obtain 

(6.61) 
where we defined 

and ~ , d v  is the number of modes in the interval (v, v +  dv). Eq. (6.61) 
shows that, for a")(v) > 0,  @ becomes smaller if la/?(v)/avl is decreased. 
Hence, the term containing a") tends to make the amplitude B(v) uni- 
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form with respect to the index v. Since the electric field is given by the 
fourier transform with respect to V ,  we obtain a pulse sharpening in the 
time domain. The number of modes whose phases are locked by a"'(v) 
can be estimated as follows: Assuming constant amplitudes rv of 
B(v) = I(v) exp - iq(v) ,  the probability density Ws is given by 

Wf exp [ - jdv a("(v) r2(v) ( d q ( v ) / d ~ ) ~ ]  . (6.63) 

This probability density functional of the stochastic phase q(v )  describes 
a Brownian motion of the phase along a coordinate v. The quantity 

defines a coherence interval, since for Iv, - v21 4 Av the phases of two 
given modes v , ,  v2 are coherent, whereas for ( v ,  - vz19 Av they are 
completely at random. The size of the coherence interval is proportional 
to the modulation strength and to the mode intensity. The equations 
of motion derived from (6.60) by applying (4.23) are 

where we assumed a constant and diagonal diffusion matrix, and, for 
simplicity, disregarded frequency shifts. The latter could be taken into 
account if necessary. Eq. (6.65) can be compared with equations of a 
microscopic theory given in [65] .  Adeement is obtained if we put 

qvav = - K + gv ; qVal1) = K ,  ; 2qvbvv, = gvgv, (6.66) 

K is the loss which, in [65] ,  is assumed to be equal for all modes; gv is 
the gain of mode v ;  K ,  is the amplitude of the loss modulation. This 
special choice of coefficients13 allows us to put Eq. (6.65) for b v = O  
into the form of a linear eigenvalue equation 

for the eigenfunction ~f and the real eigenvalues Go(M). Pv is given as 
a linear superposition 

The apparent nonlinearity of Eq. (6.65) is hidden in the linear Eq. (6.67), 
because, in addition, Go(M) has to satisfy 

Go(M) = 1 - 2 1 gv ( B f I 2 .  (6.69) 
v 

l 3  The following results were obtained previously by H. GeKers, University of Stuttgart, 
in unpublished calculations based on a Fokker-Planck equation. 

Statistical Theory of Instabilities in Stationary Nonequilibrium Systems 63 

The eigenfunctions B y  satisfy an orthogonality relation with the weight 
function gv 

1 gv B y  B:"'  = $ ( I  - GO(M))  h M M , .  (6.70) 
v 

The eigenvalues Go(M) are real. Expressing 6 in terms of the new 
variables C M  we obtain 

This gives us the distribution of the coefficients C M  in the stationary 
state. The most probable configuration is given by 

which has the solution 

ICMI' = ~ M M ~  . (6.73) 

Therefore, most likely the configuration B F  is excited in the stationary 
state. In order to determine the most probable value of Mo, we introduce 

into Eq. (6.71), obtaining 

@= - i(1- G0(M))' + 1 ( I  - Go(M))  (Go(M) - Go(Mo)) 1 6 ~ ~ 1 ~  . (6.75) 
M 

From Eq. (6.70) we know that 1 - Go(M) 2 0 .  Hence the last term in 
Eq. (6.75) is positive and the solution (6.73) is stable only if Mo minimizes 
Go(M). This configuration gives the absolute minimum of 6. From our 
general theory we know that this absolute minimum is stable, whereas 
all other configurations are unstable. The phase of CMo is not determined 
by this argument, and a diffusion of the phase of CMo will take place due 
to fluctuations. Eq. (6.75) gives an expression for the probability density 
of the excitation of other configurations B y ( M  + M,) in the stationary 
state. The configurations with smallest and with largest C g v ( ~ y 1 2  are 

v 

I excited most likely. In view of Eq. (6.68) only the latter give an important 
I 
I 

contribution to the total field. 

I 
I c )  Frequency Locking 

Frequency locking indicates the oscillation of different modes with equal 1 frequency. These modes would have slightly different frequencies in the 
noninteracting case. In typical cases the nearly degenerate modes arise 
from Zeemann splitting in a weak magnetic field [61] or from the excita- 
tion of closely spaced nonaxial modes [62].  As a result of frequency 
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locking, the mode structure of the filled resonator differs from the mode 
structure of the unfilled resonator. By application of our theory it is 
possible, to give an expression for the probability density of finding a 
certain amplitude of a mode of the unfilled resonator. As in the case of 
phase locking discussed in 6.3a, b, we may distinguish two cases: locking 
due to nonlinear, and to linear mode coupling. The analysis of both 
cases completely parallels the analysis given in 6.3a for the nonlinear 
locking and in 6.3b for the forced linear locking. However, in the frequency 
locking case we no longer distinguish different locked modes by their 
different frequencies. We rather have to use different mode characteristics 
like the polarization (in the case of the Zeemann splitted laser) or the 
spatial mode structure (in the case of nonaxial modes). Since the analysis 
is similar to the considerations of Section 6.3a. b, we discuss here only 
the simple example of the linearly induced frequency locking of two 
modes, which has been discussed in the literature in the frame of the 
microscopic theory [66]. We obtain from Eq. (6.38), by neglecting non- 
linear phase coupling, 

@ = - 1 avlPv12 - a'" By A -a(')* BIB: + 1 bvVr Ibv12 IPv,12 (6.76) 
v v v' 

which gives the probability density, W; - exp(- $"), of finding a certain 
amplitude of the modes of the empty resonator. Eq. (6.76) reproduces an 
end result of the microscopic theory [66] which, in the present case, 
turns out to be very involved. F y  well stabilized amplitudes rv of 
j?, = rv exp - icp,, Eq. (6.76) reduces td 

with 

and 

Some further implications of Eq. (6.76) and the possibilities of putting 
this result to experimental test have been discussed in [66]. 

6.4. Light Propagation in an Infinite Laser Medium 

The statistical analysis of the complete space-time behaviour of laser 
fields became important after the discovery of ultrashort light pulses. 
The description of these pulses in the mode picture is no longer economi- 
cal, since too many modes participate in the nonlinear interaction. The 
general analysis of the statistics of ultrashort light pulses is one of the 
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most important unsolved problems in quantum optics. This problem 
can not immediately be attacked with the methods described here, since 
it involves many rapidly varying variables, invalidating the Markoff 
assumption. However, if the fluctuation problem can be reformulated 
in terms of a small number of slowly varying space-time dependent 

1 fields, one may apply our theory. Two examples are given below. First 
we generalize the considerations of section 6.1 from single mode opera- 
tion to the propagation of a space-time dependent field in a one-dimen- 

i sional laser medium of infinite length. This generalization is significant, 
since it shows how close the analogy between the laser threshold and 
systems near a critical point of phase transitions really is. A microscopic 
theory of this example was given in [45]. 1 

d In the vicinity of the laser threshold we describe the system by the 
slowly varying complex amplitude P(x, t ) ,  which now also depends on 

1 
the space variable x. We determine @ by an expansion in powers of 
this amplitude, observing the general rules given in 3.2. We now have 

ai to take into account the space variation of the amplitude as well. Assuming 
slow spatial variation, we retain only the lowest order term in dP/dx 

I 
and obtain 

where 

b>O, d>O,  

a = B(A - A,) . 

Expression (6.80) is the well known basis of the Landau theory of phase 
transitions with a space dependent order parameter [67]. The relative 
magnitude of cr and d can be determined if we put A =  0 and neglect 
the fourth order term in Eq. (6.80). Then we can calculate the average 
(P*(x) B(0)) from the distribution W; - exp(- 43 by functional integra- 
tion. We obtain 

The coherence length 

is the length of the wave packets of spontaneous emission. If the laser 
atoms have a natural atomic line width y, and if the additional damping 
in the medium is ti, we have 

t0=c( t i  +y,)- '  (6.85) 
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where c is the velocity of light, and 

5, is larger than 1 cm in optical systems, and hence much longer than 
the corresponding coherence lengths in superconductors or superfluids. 
This large coherence length accounts for the fact that spatial fluctuations 
are of little importance in lasers of typical dimensions. At the same time 
it reveals one of the reasons for the accuracy of the Landau theory in 
optical examples. As is well known, the Landau theory becomes exact 
if the coherence length 5, becomes very large. The potential (6.80) 
makes it possible to calculate single time expectation values of the 
field. To this end we define the quantity 

with 

SZ(B(x) - B) = S(Re B(x) - Re B) S(Im B(x) - Im B). (6.88) 

The average on the right hand side of Eq. (6.87) defines a functional 
integral of the Wiener type. Instead of doing this integral one can evaluate 
the "Schrodinger equation" 

a ~ l a x  = d-I a Z ~ l a g a g  +(- alBIZ + blB14) Q (6.89) 
L 

which is equivalent to Eq. (6.87) [22, 681. The time independent form of 
Eq. (6.89) describes energy eigenstates of a quantum particle with mass 
2d in the potential, shown in Figs. 43. Eq. (6.89) can be solved by approxi- 
mation procedures or numerical methods familiar from quantum theory. 
Once Q is determined from Eq. (6.89), one can calculate averages of the 
form 

by the relation 

We don't evaluate the results in this generality here. The most important 
effect which determines the coherence length of the amplitude B(x, t), 
is the spatial diffusion of the phase of the light, which can be evaluated 
without solving Eq. (6.89). The same phase diffusion is well known in 
the theory of 1-dimensional superconductors (cf. e.g. [69]). If we decom- 
pose 

B(x) = r exp - icp(x) (6.92) 
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and assume that r is a space independent constant (which is valid well 
above threshold), then Eq. (6.80) reduces to 

From Eq. (6.93) we obtain for the average 

with the new coherence length 

5 = 2drz = a(A - A,) d/b . (6.95) 

Eq. (6.94) clearly shows that the phase undergoes a spatial diffusion. If 
the space integral in Eq. (6.93) would be taken over a three dimensional 
volume, the phase diffusion would vanish and would be replaced by a 
zero frequency oscillation around a constant value (Goldstone mode). 

In the second example of this' section we look at the propagation of 
periodic pulse trains in an infinite laser medium. The spontaneous 
occurrence of trains of periodic pulses in a medium with translational 
invariance is again connected with a symmetry changing instability. In 
fact, this instability, considered in the mode picture, has already been 
considered in Section 6.3a. Here, we are interested in the state, in which 
many laser modes are firmly locked to form a periodic train of very 
short and intense pulses. This state has recently been analyzed in a 
theory which neglects fluctuations, and stationary periodic pulse trains 
have been found [70]. We apply our phenomenological theory in order 
to see how this result is modified, if fluctuations (due to spontaneous 
emission) are taken into account. We assume, that the intensity of the 
field can be approximated by the non-fluctuating periodic functions, 
found in [70], and that phase fluctuations of the field have the most 

I important effect. A fluctuation in the phase of a propagating field is 
equivalent to a fluctuation in its propagation velocity. If the frame of 
reference moves with the average propagation velocity of the field, the 
space dependent phase fluctuations lead to a fluctuating space-time 
dependent displacement of the field intensity relative to the nonfluctua- 
ting state. We may describe this displacement by a "displacement vector" 
u(x, t) in terms of which the fluctuating field B(x, t) is given by 

I 
c Bo(x) is the stationary, periodic field when fluctuations are neglected, 

as given in [70]. The stationary distribution of u(x) can now be found 
from symmetry arguments. qY may only depend on spatial derivatives of 
u(x), since a uniform displacement cannot alter the probability density. 
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Hence, to the lowest order, 4" is given by 

with 

I(x) must have the periodicity of the nonfluctuating pulse train. This 
treatment of phase fluctuations in periodic pulse trains is completely 
equivalent to the problem of displacement fluctuations in one-dimen- 
sional crystals, discussed by Landau [71]. As is well known in the case of 
one-dimensional crystals, the excitation of phonons leads to the destruc- 
tion of strict periodicity. The same result holds for phase fluctuations in 
1-dimensional pulse trains. The destruction of long range order in the 
pulse train can be realized by calculating the mean square displacement 
between two points with Ix - x'l B R. We obtain 

with 
R 

5 = (2/R) j L(x) d x  
0 

The result (6.99) grows linearly with the distance, indicating a diffusion 
process which destroys periodicity over distances larger than 5. Since 
the process under consideration is again a phase diffusion, the coherence 
length 5 in Eq. (6.99) can be estimated by Eq. (6.95), where rZ has to 
be replaced by a spatial average of the field intensity. Since in the case 
of pulse trains the field intensity becomes very small between the pulses, 
the coherence length can become much smaller than in the case of 
single mode operation. If the coherence length 5 becomes comparable 
with the pulse period R, a breaking up of the pulse train into a stochastic 
sequence of fluctuation pulses must take place. This break up corresponds 
to a transition from the phase locking Region 6.3 to the random phase 
Region 6.2. 

7. Parametric Oscillation 

Besides the instabilities encountered in laser active media, there exists 
another class of instabilities in nonlinear optics. These instabilities are 
included in passive optical media by shining in a coherent laser field. 
Therefore, these are also instabilities in stationary nonequilibrium states 
far from thermal equilibrium. In this section we consider the simplest 
examples by applying the general theory of part A. In section 8 we con- 
sider also more complicated examples. 

Statistical Theory of Instabilities in Stationary Noneyuilibrium Systems 69 

7.1. The joint Stationary Distribution for Signal and Idler 

We consider the nonlinear optical process in which a light quantum with 
frequency w, and wave vector k ,  is transfiormewnto two quanta with 
the frequencies o,,  o, and the wavenumbers k , ,  k ,14.  It is assumed 
that none of the three frequencies is in resonance with excitations of 
the medium. The basic scattering process is shown in Fig. 15. In the 

v 
Fig. 15. Second order parametric scattering of light and the corresponding electronic 
transitions in a two-level atom 

+I 

m c m f  P 
Fig. 16. Scheme of an oscillator, based on induced light scattering in a medium with a 
field dependent dielectric susceptibility. ( 1  laser, m mirrors which are transparent at the 
laser frequency w,, but highly reflecting at the oscillator frequencies, c crystal with field 
dependent susceptibility f ' ,  f-filter absorbing the laser light, p photo-detector) 

same figure we show the virtual transitions in a two-level system which 
would give rise to this scattering. A typical experimental set up is shown 
in Fig. 16; it was first realized by Giordmaine and Miller [81]. 

We assume perfect frequency matching 
o,+o,=o, (7.1) 

and phase matching 

k l + k 2 = k p  

Mirrors which reflect light at the frequencies o, and w,, but do not 
reflect light at the frequency o, are employed to reduce the losses at 
--- 

l4 A general introduction to parametric processes of this kind is given in [72]. See 
also [9, 11, 37.44, 73 - 801. 
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w , ,  w ,  considerably below the losses at w,. Then the complex ampli- 
tudes P I ,  8,  of the modes with the frequencies w , ,  w ,  are the only slowly 
varying variables of the system. The external parameters {A) are repre- 
sented by the complex amplitude F, of the pumping laser. 

The potential 6 is again determined by a power series expansion 
with respect to the amplitudes P I ,  8,. Keeping only resonant terms, we 
obtain in lowest order 

&=a1 1811' +az18zI2 + ~ I Z F ~ B : B ~  + a:zFp*8182 (7.3) 
where a , ,  a ,  are real and positive constants and a , ,  is a complex con- 
stant. The terms - F,, Fp* are time independent, because of the resonance 
condition (7.1). The constant a , ,  must be proportional to the nonlinear 
susceptibility giving rise to the scattering process of Fig. 15. 

In order to derive equations of motion from Eq. (7.3) we assume that 
the diffusion matrix is constant and diagonal (cf. Section 6.1) and use 
Eq. (2.24). The result is 

where q ,  and q ,  are the diagonal elements of the diffusion matrix. The 
fluctuating forces F,, , have the properties 

( F l )  = (F , )  = 0 ; (F , ( t )  F2(t1)) = ( F l ( t )  F,*(t')) = 0 

(F:(t)  Fl( t  + 4) = 2q1 6 ( 4  1 (7.5) 

(F,*(t) F2(t + 7)) = 2q2 d ( 4 .  L 

The drift velocity in the stationary state may be given as a power series 
expansion in the mode amplitudes. In addition it has to satisfy Eq. (2.20). 
Up to the accuracy of 6 we obtain 

where the coefficients a , ,  a, ,  d l ,  6 ,  are real and fulfill the relation 

a 1 + a 2 = 6 , + 6 , .  (7.7) 

Clearly, a , ,  a , ,  d l ,  6 ,  describe detuning effects, which cannot be present 
in our case, since we assumed exact resonance in Eq. (7.1). Therefore, j we may put 

t 

in the following. In the stationary state the amplitudes fluctuate around 
the state 6 
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The state (7.9) becomes unstable, if the bilinear form in f l , ,  f l , ,  Eq. (7.3), 
is no longer positive definite. This happens if the secular equation 

has a negative root 

11.2 = + ( a , q , +  azq,) + V + ( a , q , -  a2q2)2 + la,2FpI2 q1q2 2 
(7.11) 

In order to determine 6 in the vicinity of this instability, we diagonalize 
Eq. (7.3) by the transformation 

and obtain 

In (7.13), (7.14) we used the approximations 

valid in the threshold region. Eq. (7.15) shows that 1 ,  < A ,  in the thresh- 
old region. The instability occurs only with respect to the mode o,, 
whereas v ,  is heavily damped at the threshold. The form of 6 in the 
vicinity of v ,  = v ,  = 0 ,  for IF,(' slightly above the threshold (7.12), is 
shown in Fig. 17. In order to describe the threshold region completely, 
we have to add higher order terms to the potential 6. Since only o, 
becomes unstable, we need only add higher order terms with respect 
to o,. We obtain 

with real, positive b. Eq. (7.16) gives the joint stationary distribution 
for both parametrically excited modes (signal and idler) in the threshold 
region. This result has not yet been obtained by the microscopic theory 
of stationary parametric oscillation [75 - 801. However, some results of 
the microscopic theory are contained in Eq. (7.16) as special cases and 
we now consider them. 

i) The distribution for the "signal" amplitude [78] .  This distribution 
is obtained from Eq. (7.16) by integrating over f l , ,  or, even more simply, 
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by using the fact that v1 is heavily damped compared to v, and can be 
put equal to zero. This yields 

t i  
- I v 1 I  ' 

Fig. 17. The potential (7.14) slightly above threshold, in the vicinity of v ,  = v ,  = 0. The poten- 
rial has a sharp minimum with respect to lull 

The potential (7.19) has the same form as the potential for a single mode 
laser. This had to be expected in view of the fact that the same basic 
principles govern both instabilities. The result (7.19) has also been found 
in the microscopic theory [78]. 

ii) The joint distribution of signal and idler, in the case of equal 
damping, has been obtained recently. from the microscopic theory (cf. 
[SO] and Section 8). This special case is obtained from Eq. (7.16) by 
putting 

a l = a 2 = a ;  q l = q 2 = q  

which yields 

The result of the microscopic theory [80] reads in our present notation 

The two results (7.16) and (7.23) are the same if 

ill B 2blu2l2 

holds. lv212 can be estimated by taking the maximum of the potential 
(7.16). Then the condition (7.24) is reduced to li121 4 ill which, by Eq. (7.21), 
defines a region around threshold 

la - la1zFp11/2a 4 1 (7.25) 

where the phenomenological theory applies. 

7.2. Subharmonic Oscillation 

Subharmonic oscillation occurs if signal and idler degenerate to one 
single mode [72, 821, i.e., we have 

This case is contained in the theory of the last section. Since it has some 
peculiar features of its own, we discuss it separately. In the case of 
nondegenerate parametric oscillation the phases of B1 and B2 are not 
determined in the stationary state. Only the sum of their phases is locked 
to the phase of the pump amplitude F,. 

The sum of the phases of signal and idler degenerates to the double 
of the subharmonic phase which is then locked to the phase of the pump 
field. Therefore, the double phase of the subharmonic is fixed up to 
multiples of 271. The phase itself is then fixed up to multiples of z. Sub- 
harmonic generation presents, therefore, an example of a symmetry 
changing instability, where the symmetry, which is changed, is discrete, 
rather than continuous, as in our other examples. The minima of qY 
in the ordered state will be discontinuously degenerate. Specializing 
Eq. (7.16) for the present case we find 

The contour lines of the potential (7.27) in the complex B-plane are 
shown in Fig. 18. In order to obtain the probability density for the 
absolute value of the amplitude (PI alone, we integrate the distribution 
Wl - exp(- 6) over the phase of the subharmonic to obtain 
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The normalization has to be carried out by integrating over (81 from 0 
to co. I, is the Bessel function with imaginary argument and index 0. 
If we expand the Bessel function in a power series, keeping only the 
lowest order, we obtain 

b 

Fig. 18. The potential 6 for subharmonic oscillation, Eq. (7.28) below (a) and above (b) 
threshold 

This result has, again, the same form as the result for the single mode 
laser. In this case, however, the form (7.29) is not due to a phase angle 
invariance of the system, which is intrinsic to the system, but rather to 
complete lack of knowledge of the phase because of integrating over 
this .variable. 

8. Simultaneous Application of the Microscopic and the Phenomen- 
ological Theory 

In the previous sections we gave examples for the application of the 
'general phenomenological theory, set forth in the first part of this paper. 
The microscopic theory was only used to compare the results, wherever 
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it was possible. In this last chapter we will treat nonlinear optical pheno- 
mena by combining the microscopic and the phenomenological approach. 
The microscopic theory, whose concepts were given in Section 5.2, is used 
to derive a Fokker-Planck equation for the quasi-probability density of 
the interesting mode amplitudes. We make use of the phenomenological 
theory, when we chose a system which has the property of detailed balance 
with respect to the mode amplitudes. This choice allows us to employ 
the potential conditions of Section 4.2 to write down the stationary 
quasi-probability density for the considered process. In section 8.1 we 
introduce the general scattering process for photons in a medium with 
nonlinear susceptibility. The process is very general since it involves 
an arbitrary number of quanta in an arbitrary number of modes. It is 
special because of the restriction to detailed balance, which amounts 
here to the assumption of equal loss rates for all modes. In Section 8.2 
the Fokker-Planck equation for the process is set up along the lines 
given in Section 5.2. This equation is solved in 8.3 by using the methods 
of Section 4.3. In 8.4 we discuss some special examples contained in 
the general solution. Some of these cases were already considered in 
Section 7 from a purely phenomenological viewpoint. As a new result 
we obtain the stationary distributions of higher order parametric proces- 
ses. Furthermore, multi-mode effects, both in the pump and in the sti- 
mulated processes are taken into account. 

8.1. A Class of Scattering Processes in Nonlinear Optics and Detailed 
Balance 

We consider optical scattering processes of the following kind. Let some 
medium with a field dependent optical susceptibility be given, in which 
certain optical modes can propagate. One mode is supposed to be directly 
excited by an external laser field. The quanta which are present in this 
directly excited mode may be scattered into other modes. The inter- 
action which causes this scattering is mediated by the electrons of the 
medium, i.e., by the field dependent part of its susceptibility. We re- 
present this process graphically in Fig. 19. A single photon of a field 
mode (with frequency op and wavenumber k,) which is directly coupled 
to the pump light, decays into n photons with various frequencies and 
wavenumbers. The conservation of energy and momentum implies the 
matching conditions 

C nvmv = u p ,  (8.1) 
v 
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where we have allowed for the creation of n, quanta in mode v. If we 
assume that there is no resonance between electronic transitions in 
the medium and the frequencies of the modes, the interaction between the 
modes may be described by an effective Hamiltonian (cf. e.g. [9,44,77,79]). 
Attaching a boson annihilation operator b, to each incoming line in 
Fig. 19 and a boson creating operator 6: to each outgoing line, we get 
the following effective interaction Hamiltonian 

Hi,, = (ih F,b; + i h y bpn') + (h.~.)  (8.3) 

with 
n 

n + =  n (b:)".. 
v =  1 

Fig. 19. General scattering process in nonlinear optics 

The first term in Eq. (8.3) describes t,he direct excitation of the mode 
with frequency w, by the external ford F,, which is proportional to the 
amplitude of the pumping laser. The second term describes the scattering 
process shown in Fig. 19, where we have again allowed for the simul- 
taneous creation of several (nv) quanta in mode v. The hermitian con- 
jugate describes the time reversed processes. We may generalize the 
Hamiltonian (8.3) still further by allowing for the presence of several 
different competing scatttring mechanisms of the type shown in Fig. 19. 
We simply have to put, instead of Eq. (8.4), 

where n *  is some arbitrary (analytic) function, defined for c-numbers. 
The resonance condition (8.1) has to be generalized to the condition 

We assume that this scattering process occurs between the two mirrors 
of some optical cavity. The mirror losses of all modes have to be taken 
into account by additional terms in the Hamiltonian, which describe the 
coupling of the mode amplitudes to some heat baths. Eliminating the 
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heat bath variables by well known procedures, we derive an equation 
of motion for the density operator ~ ( , b , ,  b:, b,, b;, .. . b,, b:, b,, 6;) (see, 
e.g., [82,77]). Q may be considered to depend on the basic boson operators 
describing the field modes. 

Here the constant K, is the decay rate of the amplitude of mode v due 
to the escape of photons through the mirrors of the cavity. ii, is the 
mean quantum number in mode v due to the presence of the heat baths 
alone. For thermal heat baths and optical frequencies this number is 
much smaller than 1 and therefore neglected. The notation K, and ii, is 
evident; ii, is also negligible. Eq. (8.7) gives the complete microscopic 
formulation of our problem. Due to the presence of the driving force 
F, and the loss rates K,, K, in (8.7), we have a steady energy flow from 
the pumping laser through the directly excited mode into the other 
modes. The distribution of the energy over the different modes and their 
degree of excitation is determined by their loss rates and their participa- 
tion in the scattering process. Due to the presence of mirrors and feed- 
back, multiple scattering processes and depletion of the initially excited 
mode are important. At first sight, this problem seems to be very compli- 
cated. On the other hand, it is clear from the discussion in section 4 
that it is possible to find the stationary distribution for systems in detailed 
balance, even for very complicated cases. Hence, we reduce our general 
problem to a special one, in which we may expect the presence of detailed 
balance. This could be done by deriving a Fokker-Planck equation from 
Eq. (8.7) and looking for cases in which the potential conditions of 4.2 
are fulfilled. 

Physically more instructive, although mathematically less rigorous, 
is the method of directly analyzing the possibility of irreversible cir- 
cular probability currents in the system. The parameters of the system 
can then be chosen in such a way as to make circular probability currents 
impossible. Here we apply the latter procedure. In the present case, 
circular probability currents may occur in two different ways: first, by a 
separate circular diffusion of the amplitude of each mode; second, by a 
coupled circular motion of several mode amplitudes. It can be shown by 
the arguments of Section 6.1 that the probability currents due to un- 
coupled amplitude motions always have to be reversible and cannot 
destroy detailed balance. Thus, the only possibility for circular probability 
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currents is the occurrence of circular motions involving several ampli- 
tudes. Fig. 20 shows the way in which the variables of the total system 
(including the pumping laser and the heat baths) are coupled by the 
Hamiltonian. This scheme indicates which variables can participate in 
a coupled cyclic diffusion. Since the total system is not in thermal equilib- 
rium, some cyclic probability currents have to occur. 

directly excited heat reservoir 
amplitude b,, b,+ 

modes b,, b: 
heat reservoirs 

excited by scattering 

Fig. 20. The coupling of the various degrees of freedom in the total system 

We consider first the directly excited mode, described by b,. This 
degree of freedom participates in a cyclic current, because it is excited 
by the laser field without having the possibility of acting back on the 
laser. However, if we make the assumption, that this degree of freedom 
relaxes rapidly to a conditional equilibrium with respect to the ampli- 
tudes of the other modes, i.e., I 

we can eliminate this variable without destroying the Markoff property 
of the remaining mode amplitudes. Then it is sufficient that the irreversible 
cyclic probability currents among the remaining degrees of freedom 
vanish, in order to haves detailed balance. Fig. 21 incidates how the 
parametrically excited modes are coupled. They are indirectly coupled 
by the directly excited mode and they are also coupled by the heat 
baths. 

In principle, we may have a circular probability current in which 
two or more modes participate in the following way: The amplitude 
of mode p is changed by a fluctuation absorbed by its heat bath, which 
is at the same temperature as the heat bath of mode v. The heat bath of 
mode v transfers the fluctuation into mode v, which reacts back on the 
amplitude b,. From there, the fluctuation is given to mode p again, 
thereby closing the cycle. 

From Fig. 21 it becomes clear, that circular probability currents 
of this type are zero, if the net rate with which the quanta of different 
modes are absorbed by the heat baths are equal for all modes. Therefore, 
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detailed balance holds if 

K , = K .  (8-9) 

If we assume Eq. (8.9) we can find the stationary solution by the methods 
of 4.3. But first, we have to derive a Fokker-Planck equation from Eq. 
(8.7). 

directly excited 
amplitude b,, b l  

I I 

## 
b,,b: b , ,  b; .. . . .. .. . b,, b: .... . .. . b,, b,+ 

t  l t t i t  t l t  t l t  
reservoir - reservoir - reservoir - reservoir I-1-1-I 

Fig. 21. The coupling of the parametrically excited modes by the heat reservoirs and the 
directly excited mode 

8.2. Fokker-Planck Equations for the P-Representation and the Wigner 
Distribution 

We transform the operator equation (8.7) into an equivalent c-number 
equation by using a quasi-probability representation (cf. [8, 841) of the 
statistical operator Q. We obtain the P-representation [85] of Q, 

Q({b, b+)) = (n) -n n j d 2 ~ v  IHPD P({P, P*)) ({P)I , (8.10) 
( v )  

by putting Q into anti-normal order with respect to the boson operators 
of the modes and considering it as a function of {P, P*) instead of {b, b+) 
[86]. In Eq. (8.10), I{/3)) is a coherent state [84], defined by 

The equation of motion for P is obtained [86] by putting the operator 
equation of motion for Q ,  (8.7), into anti-normal order and substituting 

The ordering can be carried out with the help of the relations 
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We obtain 

Eq. (8.15) can be approximated by a Fokker-Planck equation by ex- 
panding the differential operator f i * ( (p*  - a/ap}) in powers of a/ap and 
retaining only terms up to second order. One obtains essentially an 
expansion around the classical limit of the considered quantum process 
(cf. 5.2). By introducing the dimensionless variables f lv = p v / G / W )  one 
can show, that subsequent powers differ in order of magnitude by 
1/(lBVl2>. 
In this diffusion approximation Eq. (8.15) reduces to 

Once the solution of Eq. (8.16) is known, all normally ordered expectation 
values of the boson operators may be calculated by substituting according 
to Eq. (8.12) and using the distribution like a classical probability density 
[85]. A disadvantage of the use of the P-representation is that P need 
not always exist. In particular it is knqwn that P does not always exist 
for parametric processes involving several modes [75, 773. For this 
reason we prefer to transform Eq. (8.15) into an equation for the Wigner 
distribution, which is known always to exist [87,84]. The Wigner distribu- 
tion is given in terms of P by 

w ( { p ,  p*))  = (2/7d" n !d2av(exp - 2 b V  - pVl2) P({a ,  a*))  . (8.1 7)  
( v )  , 

From Eq. (8.15) we obtain 

- y(pP - falap;) f i * ( {p*  + i a l a p ) )  w - F; a wlag; (8.18) 

+ K, a/ap;(p; + ialap,) w + [c.c.] . 1 
As before, we introduce the diffusion approximation and obtain 

= [ & ~ p : ( ~ p :  - YB; a f i ~ { p } ) / a ~ ~ )  w + C f K a2 w/a& ap: 
v v 

1 
(8.19) + a/ag;(~,p; - F; + yf i * ( {p* ) ) )  W +  31(-, a2 wlap, ap; 

+ [c.c.] . 
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It is interesting to compare Eqs. (8.19) and (8.16). They differ in the 
second order derivative terms which describe the fluctuations, i.e. the 
spontaneous emission processes. The two different descriptions corre- 
spond to two different, but equivalent, interpretations of spontaneous 
emission in nonlinear optics. Spontaneous emission can be considered 
as being induced by the vacuum fluctuations of the modes, which are 
in turn driven by the vacuum fluctuations of the reservoirs (- K). Spon- 
taneous emission may also be viewed as arising from the interaction (- y). 

If W has been determined from Eq. (8.19), one may calculate all 
normally ordered expectation values by substituting 

and using W as if it were a classical probability density. Antinormally 
ordered expectation values can be evaluated by substituting 

b :+p : - fa lap , ;  bv +pv- fa lap,*  (8.21) 

and proceeding as before (cf. [88]). 

8.3. Stationary Distribution for the General Process 

Neither Eq. (8.16) nor Eq. (8.19) fulfill the potential conditions of Sec- 
tion 4.2. The reason for this was discussed in 8.1 and was found to be 
given by certain cyclic probability currents occurring in the stationary 
state. Adopting now the two conditions (8.8) and (8.9), we can suppress 
these currents, and hence establish detailed balance. Condition (8.8) is 
used to determine the equilibrium value of the amplitude pp of the 
directly excited mode, for given values of the pump Fp and the instan- 
taneous amplitudes of the remaining modes. Putting the drift term of pp 
in Eq. (8.19) equal to zero we obtain 

We eliminate pp from Eq. (8.19) by inserting Eq. (8.22) and integrating 
over a,, a,*. In addition, we use the condition of equal damping, Eq. (8.9). 
This gives us the reduced equation 

Eq. (8.23) fulfills the potential conditions as it should according to the 
analysis of Section 8.1. It is now easy to give the stationary solution 
of Eq. (8.23) by making use of the connection between the drift term 
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and the stationary distribution, which is provided by the potential 
condition (4.13). We obtain 

W; - exp ( - 4') (8.24) 

with 

@ = 2 (BVl2 - ( 2 ~ 1 ~  icp) (Fp*Q + FpQ*) -I- ( 2 y 2 / ~ K p )  l Q I 2  . (8.25) 
V 

Eq. (8.25) gives the ~~tationary distribution directly in terms of the arbi- 
trary function 52, which defines the interaction Hamiltonian (8.3).  
Therefore, this solution is very general and comprises many different 
special cases (cf. [80, 891). For y = 0, the result (8.24), (8.25) reduces 
to the Wigner distribution of independent modes in their vacuum state. 
For Fp = 0, Eqs. (8.24), (8.25) describe modes, which are passively coupled 
by the nonlinear properties of the medium. The same result would be 
obtained, if Fp is different from zero but fluctuates on a very short time 
scale. This result explains the need of coherent laser sources for pumping 
oscillators in nonlinear optics. In the following section we consider a 
number of special cases contained in the solution (8.15). 

8.4. Examples 

The most important scattering processes in nonlinear optics are those 
in which quanta in two modes are creFted. These second order effects 
usually have the largest cross sections among the nonlinear processes. 
These processes were already considered in Section 7 from the viewpoint 
of the phenomenological theory. We can now compare these results 
with the results of the present microscopic theory. Moreover, we discuss 
the influence of various kinds of multimode effects on the photon statistics. 
These effects may arise from the multimode structure of the pump. They 
can also come from the multimode structure of the output, which may 
contain several signal-idler clusters. Higher order scattering processes, 
which include three or more scattered quanta created by the destruction 
of one initial quantum, have a considerably smaller cross section and 
are therefore more difficult to observe in practice. Some of their proper- 
ties,.discussed in section b, differ quite markedly from the properties 
predicted for second order effects. In particular it is shown, that the 
instability leading to oscillation in such higher order modes is not a 
continuous instability, like that of the second order effects, which resem- 
bles continuous symmetry breaking second order phase transition (cf. 5.4).  
Instead, we find that the oscillation threshold is marked by a discon- 
tinuous jump of the mode amplitudes from zero to some finite value. 
The instability causes a symmetry change as in the earlier examples. 
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Thus, the oscillation threshold of these higher order processes resembles 
a first order phase transition. This difference in the threshold behaviour 
should be observable experimentally and would make the experimental 
investigation of these processes worthwhile. 

a)  Parametric and Subharmonic Oscillation 

i) Parametric Oscillation 

For the case of parametric oscillation the basic scattering process is 
represented by Fig. 22. The number of modes is n = 2. 52 takes the form 

Fig. 22. Parametric scattering 

Therefore, the potential @ is given, according to Eq. (8.25), by 

This result has already been obtained in [ 8 0 ] .  It was compared with the 
result of the phenomenological theory in Section 7.1. The potential (8.27) 
has the continuous symmetry 

A c p = c p l - c p 2 + A ~ ' = ~ ~ - ~ ~  

with 

c p 1 + ( ~ 2 = c p ' l + c p ; .  

Here, c p ,  and cp2 are the phases of the complex amplitudes B , ,  B 2  . For 

IFPI 5 (8.30) 

the potential 4"as a minimum for 8 ,  = / I 2  = 0. This minimum has the 
full symmetry (8.28) and is, therefore, not degenerate. For 
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@ has a continuum of degenerate minima, given by 

Ib1l= 1821 = ~/IF,IIY - K K , / Y ~ .  (8.32) 

Each single minimum (8.32) breaks the symmetry (8.28) which is the reason 
for the degeneracy. Assuming sharp values for the amplitudes IfllI and 
lPzl well above threshold, we obtain from Eq. (8.27) 

WS - ~ x P [ ( ~ Y  IF,* 81 BZIIKK~) . C O S ( ( P ~  + q2 - v)] (8.33) 

where v is the phase of F,. Eq. (8.33) is the same expression as obtained 
in the case of mode locking in Section 6.3. It demonstrates that the sum 
cp, + cp2 is, indeed, locked to the phase of the pumping laser. Integrating 
Eq. (8.27) over cp, and cp2 we obtain the distribution for the amplitudes 
IB1l and lB21 Is. 
w:- 181821 I o ( ~ Y  lFpBlh l /~~ , )  ~ X P C -  2(18112 + 1b2I2 + Y ~ I B ~ B ~ ~ ~ / ~ ~ , ) I  . 

(8.34) 

I, is the Bessel function with imaginary argument and index 0. For typical 
oscillators the quantity y is much smaller than K. Hence, 

I C I C , / ~ ~  B 1 . (8.35) 

With (8.35) and the notation 

Eq. (8.34) takes on the more transparent form 

Wi - (I1 12)- exp [($a fi - aIl12) - ao(l/rI - 1/71)2] . (8.39) 

This distribution is shown in Fig. 23. Because of (8.35), we have a, B 1, 
and the distribution is sharply centered around l/rl= 1/71. Therefore, 
the assumption of the phenomenological theory, that only one degree of 
freedom becomes unstable at threshold (cf. Section 3.2 for the general 
case and Section 7.1 for the special example), is clearly born out by the 
microscopic result. Integrating Eq. (8.34) over the idler amplitude 18;( 
we obtain 

which reduces to the result (7.19) for a ,B  1. 

l 5  The normalization has to be carried out by integrating over Ib,,,I from 0 to m 
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Fig. 23. The stationary distribution of the intensities I , ,  I ,  of signal and idler, Eq. (8.39) for 
various pump intensities a, Eq. (8.37). The sharp concentration of the distribution around 
I ,  = I ,  is not resolved in the diagram because of Eq. (8.35) 

ii) Subharmonic Oscillation 

Experimentally, subharmonic oscillation is realized, if the two modes 
cannot be distinguished from each other by any method. For this case 
the basic scattering process is shown in Fig. 24. The number of modes is 
n = 1. S2 takes the form 

Fig. 24. Subharmonic scattering 

It should be noted, that the distribution for the subharmonic amplitude 
is not obtained as the limiting case of the signal distribution (8.40), but 
rather as the limiting case of the joint distribution of signal and idler 
Eq. (8.27). The potential @ is given, according to Eq. (8.25), by 
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This result coincides in form with the result of the phenomenological 
theory, Eq. (7.27), and a result obtained in [ 8 2 ] .  The theory given in 
[82]  was purely classical and dealt with thermal fluctuations in sub- 
harmonic generation. Contrary to that treatment, we neglected in 8.1 
all thermal fluctuations as being unimportant at optical frequencies, 
and considered, instead, the quantum fluctuations as constituting the 
essential noise source. The fact, that both theories give the same overall 
result, apart from different expressions for the parameters of the distribu- 
tion, is immediately understood in view of the purely phenomenological 
arguments given in 7 .2 .  The potential (8.42) is shown in Fig. 18. The 
minimum at PI = P2 = 0 becomes unstable for 

At first sight it seems that the threshold for subharmonic generation is 
half the threshold for nondegenerate parametric oscillation (cf. Eq. (8.31)). 
However, it should be noted that K in Eq. (8.43) is the limit of the sum 
of the loss rates of the nondegenerate modes, i.e., K ,  + rc2+rc. There- 
fore, the 2 in (8.43) cancels. The new minima of QY are given by 

PI = B: = + ~ / I F ~ I / Y  - K K ~ I ~ Y ~ .  (8.44) 

Since they break a discontinuous symmetry, there exists no continuous 
motion, which could restore the symmetry. Instead, the symmetry is 
restored by discontinuous jumps between the two minima. The mean 
time z between two such jumps has beep calculated in [82]  for thermal 
fluctuations. For quantum fluctuations this result takes the form 

Eq. (8.45) is valid for 

b) Higher Order Processes 

In this, and the following section we make use of the solution (8.25) to 
discuss the photon statistics of some processes, which have not been 
discnssed earlier in the literature. 

We consider first the n-photon process, which is represented by 
Fig. 19 and choose Q+ according to Eq. (8.4). The general solution 
(8.25) then takes the form 

We split the complex amplitudes into absolute values and phases 
Pv = rv exp - icp, . 
The potential QY has, in general, a large number ofcontinuous symmetries, 
since all phases cpv may be changed continuously, subject to the constraint 

C nvcpv = const. (8.48) 
v 

The extrema of (8.47) are determined by the equations 

for 11 = 1 . .  .n. Without restriction of generality we have chosen the 
phase of Fp to be zero. By the transormation 

with 

we obtain the equations 

for A = 1 . .  . n, whose coefficients are completely independent of the index A. 
Therefore, the system of Eq. (8.52) is solved by putting 

rv = r (8.53) 

independent of v. 
Eq. (8.50) gives directly the relative magnitude of the absolute values 
of the various mode amplitudes. For r we obtain the trivial solution 

and, in addition 

We observe, that the right hand side of Eq. (8.55) is formed by a power 
of r of the order 2 1 nv - 2, which passes through 0 for r = 0 (cf. Fig. 26). 

v 

The left hand side is formed by a polynomial of the lower order 1 nv - 2, 
v 

whose coefficient is proportional to Fp. It goes through - 1 for r =  0. 
For Fp=O and for sufficiently small Fp, the left hand side is always 
smaller than the right hand side and no real solution of Eq. (8.55) exists. 
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In this case r = 0 is the only solution and we have a stable behaviour 
with small amplitudes. If F, becomes sufliciently large, F, = FpG, the 
polynomial on the left hand side will finally, at some point, be tangent 
to the power of the right hand. For still larger values of F,, the two 
curves will intersect in two points. Exemptions to this general behaviour 
are all processes with 1 nv 2 2, which are the second order processes 

v 

k ~ 3 l k 3  

I 
Fig. 25. Third order parametric scattering 

discussed in a). The first intersection for smaller r defines a maximum 
of & which corresponds to an instable state. The second intersection 
for larger r gives a new set of degenerate minima of &, which correspond 
to new stable stationary states, each of which breaks the phase symmetries. 
Since, in general, several (continuous) phase symmetries are present, the 
new minima are degenerate with respect to several (continuous) param- 
eters. Therefore, several different diffusion modes exist which carry the 
system through the degenerate new qinima. With increasing F, the 
maximum of & is shifting to smaller valuks of r whereas the new minimum 
shifts to larger r values. We find, therefore, a multistable behaviour with 
the two stable states at r = 0 and at r > 0. We consider several special 
cases of Eq. (8.55). 

i) For the scattering process Fig. 25, we obtain 

- 1 + lFpl f i ( K ~ , ) - ~ / ~  r =  r4.  (8.56) 
The three cases F, 2 FpG are shown in Fig. 26. 

ii) We consider the case in which the three modes of Fig. 25 degenerate 
to a single mode, the third order subharmonic with o = i o , .  In this 
case Eq. (8.47) gives a potential with the discontinuous threefold symmetry 

cp-'cp+~n:+cp+$n:. (8.57) 
This potential is shown in Fig. 27. The minimum at r = 0 has the full 
symmetry (8.57). For F, larger than some critical value FpG, the equation 

- 1 + 27'I41FpI y'1Z(K~p)-314 r =  r4 (8.58) 

which follows from Eq. (8.55), gives a new minimum of @ for some root 
r > 0  (6. Fig. 26). This new minimum is degenerate with two further 
minima, according to the symmetry (8.57). 
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Fig. 26. Thresholdcondition andextrema ofttie potential4 for third subharmonicgeneration 

Fig. 27. The potential (8.47) for third subharmonic generation above threshold 
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iii) For the general case of the m-th subharmonic, Eq. (8.47) has an 
rn-fold discontinuous symmetry 

q + p +  271/m+. . .+p+2nk/m+. . .+p+2n . (8.59) 

Th(e threshold condition is determined by 

- 1 + ~ ~ ( ~ ~ ~ ) - 1 / 2 ( ~ 2 ~ ~ / ~ ~ ~ ) ~ / ( 2 ~ - 2 )  r m - 2 - , . 2 m - 2  - (8.60) 

Alll that has been said for the third subharmonic can be carried over to 
this more general case. 

c) Mode Clusters in Parametric Oscillators 

We consider now an example in which Q, in the Hamiltonian (8.3), 
describes several competing scattering processes - the simultaneous 
oscillation of several signal-idler clusters in parametric oscillators. A 
cluster is defined as a pair consisting of one signal and one idler. Several 
clusters may oscillate simultaneously for the following well known reason 
[81] : The matching condition 

has, in oscillators of finite length, only to be fulfilled up to multiples of 
2nlL. This weaker condition, together with 

W ~ + W ~ = W ~  I (8.62) 
L 

is satisfied simultaneously by several clusters, which are equidistantly 
distributed over a broad frequency range. The frequency difference be- 
tween adjacent clusters is large compared to the natural mode spacing in 
the resonator cavity. For 1 clusters, 52' takes the form 

Q +  = 1 gVb:,b:, (8.63) 
v 

where b:, and b:, are the creation operators of the signal and the idler 
in the v-th cluster. The general potential (8.25) then takes the form 

where the phase of Fp has been put equal to zero. For 

Fp 5 ~ ~ p / ~  I s v l  
@ has a minimum at Bv = 0. For 

this minimum is shifted to finite values of Bv and we have symmetry 
degeneracy with all its consequences. 

It is interesting to note that the expression (8.64) contains a coupling 
of the phases of different clusters in its 4th order term. The phase cou- 
pling fixes only the sum p,, + p,,, whereas the phase difference p,, - p,, 
is still arbitrary, as was found for a single signal-idler pair. Therefore, 
the signal phases and the idler phases separately are subject to a free 
diffusion. 

The phase sum p,, + p,, is obtained by minimizing 4" The phase 
sums of different clusters are therefore correlated. A calculation of the 
details of this phase coupling is usually difficult, since a strong cou- 
pling between the amplitudes and the phases has to be expected. The 
origin of this coupling can be seen by the following qualitative argument: 
The phases of signal and idler are determined, according to Eq. (8.64), 
by two main influences. These are the gain (- F,), which has to be as 
large as possible, and the saturation (- 4th order term), which has to 
be as small as possible, in order to minimize 4". The gain is a maximum if , 

c ~ 1 ~ + ( ~ 2 ~ - ~ ~ = o  (8.67) 

where y V  is the phase of the complex coupling constant g,. 
However, for this arrangement of phases the saturation is also a 

maximum, since now all terms in the double sum in Eq. (8.64) are posi- 
tive and no compensation of different terms is possible. In order to have 
minimum saturation, the equidistribution of the quantity p,, + p,, - tp, 
between 0 and 271 would be most favorable, since then the terms of the 
double sum could compensate each other. On the other hand, the ampli- 
tudes of all clusters for which the relation (8.67) does not hold, have to 
be small, since the gain is small. Therefore, a strong coupling between 
amplitudes and phases can be expected. In practical cases one usually 
has a small number of clusters. These are known to show an irregular 
spiking, which can be understood by the mechanism described above. 
Each cluster tries to fulfill the relation (8.67) itself, at the cost of the 
other clusters, which cannot fulfill relation (8.67) at the same time, because 
saturation would then be too strong. The stationary state is multistable, 
since each cluster may be the dominant one. 

d) Multimode Laser Pump 

All the calculations of this chapter can be generalized further by taking 
into account the multimode structure of the pumping laser. We simply 
have to replace the interaction Hamiltonian (8.3) by 

Hint = C Ha 
a 
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where each HI corresponds to one mode of the pumping laser and has 
the form given in Eq. (8.3) 

Here we have taken into account that the laser modes excite the medium 
directly at various frequencies w,,. The directly excited modes b,,, b$ 
give rise to the same or to different scattering processes. These scattering 
processes are assumed to be of the same kind as in 8.1 and are described 
by the operators QI. All considerations of 8.1 remain valid, but they 
now refer only to one single mode of the pumping laser. We may use 
the new Hamiltonian to go through the analysis of 8.2, 8.3. Again we 
obtain a Fokker-Planck equation for the Wigner distribution of the 
process. Its stationary solution is given by Wf - exp(- @), with 

We realize, that Ws factorizes with respect to the contributions of the 
various laser modes. This factorizing does not exclude, however, that 
additional correlations between different resonant modes are produced 
by the multimode structure of the pump. In order to see this in more 
detail, and as an illustration of the general result (8.70), we investigate 
the stationary distribution for a second ~ r d e r  parametric oscillator which 
is pumped by a multimode laser. ~he ' s im~les t  situation occurs when 
each laser mode pumps its own signal-idler pair. In this case each function 
52, depends on its own pair of variables (amplitudes), and the distribution 
(8.59) factorizes with respect to different signal-idler pairs. No correla- 
tion between different signal-idler pairs occurs in this case. Another 
possibility is that all laser-modes excite the same dominating signal- 
mode Po, P,* However, because of the frequency differences between 
the laser modes, there corresponds a separate idler mode PI. P,* to 
each laser mode. In this case the potential @ takes the form 

The Wigner distribution Wf - exp(- @) factorizes with respect to 
the amplitudes of the various idler modes PI. Nevertheless, because 
they are all combined with the same signal mode Po, there exists a strong 
correlation between the different idler modes, which will be considered 
below. 

First we calculate the distribution of the signal mode amplitude by 
integrating over all complex idler amplitudes. We obtain 

i 2 C ??IIFp~12(..pJ-2 IPo12 (8.72) 
.exp -21POl2+ 1 

1 + C Y:(..~I)-~IPOI~ 
1 

For 

this may be reduced to 

The distribution of the signal mode turns out to be of the same 
form as for single-mode pumping. The amplification due to the various 
pump modes is simply additive. The threshold condition for oscillation 
of this type is given by 

Because of the additivity of the gain due to the single laser modes, we 
obtain oscillation already for pump intensities which, in a single- 
mode pump, would not be sufficient to drive parametric oscillation. 
The saturation is described by the fourth order term of (8.74). This 
term contains a double sum over all modes and, hence, contains a 
factor proportional to the square of the number of pumping modes N , .  
The maximum of the distribution (8.72) above threshold is at 

Because of the large saturation its order of magnitude is smaller by a 
factor N, if compared with single mode pumping with a pump intensity 
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and with 

Y"Yi.. (8.78) 

Finally, we consider the correlation between the different idler modes 
pi. which is produced by their common signal mode. Integrating (8.71) 
over the complex Do-plane we obtain 

This expression no longer factorizes with respect to different idler modes. 
In particular (8.79) depends on the phases of the individual idler ampli- 
tudes and is invariant only against the rotation of the phase angle of the 
collective quantity 2 F , * , ~ , K , - , ' ~ ~ .  This result has to be contrasted with 

I 

the single mode case, where the idler phase was found to be arbitrary, if 
the signal phase was unknown. In the present case, the phase sum of the 
signal and each idler is determined by the phase of the corresponding 
mode of the pumping laser. Therefore, the correlation of the idler phases 
is nothing but an image of the correlatio? of the phases of the laser modes. 
If the pump light contains phase locked modes which give a periodic 
pulse train, then the idler phases are locked and give rise to a new pulse 
train. If the pump modes have random phases, the idler modes will 
also have random phases. The examples which we have considered in 
this section were only two possibilities out of a large manifold of mode 
configurations which may be realized in a given medium and a given 
cavity. Due to the lower threshold it seems possible to discriminate 
experimentally the case in which one signal mode is driven by several 
pump modes from other types of oscillation. In general, however, one 
has to expect that the formation of several clusters is more likely for 
multimode pumping and that experiments will not be reproducible. 
Therefore, there is at present no reason to give a further evaluation of 
our results for these cases. 
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1. Introduction 
This paper deals with the dynamics of open systems (6) moving ir- 
reversibly under the influence of their surroundings (23). As a basis for 
the discussion of an open system 6 we use a complete microscopic 
description of the composite system 6 Q 23. By eliminating the coordi- 
nates of 23 we infer the behavior of 6 .  The motivation for this investiga- 
tion is that nature frequently confronts us with coupled systems 6 and 23 
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only one of which, say 6. is of experimental relevance. It is then a dictate 
of economy to look for a "closed description of the dynamics of G alone. 
Let us mention just three out of the countless examples. 

(1) The motion of penduli is usually found empirically to be de- 
scribable in terms of the equation of motion of an ideal oscillator aug- 
mented by a suitable friction term. Statistical mechanics explains this 
behavior by accounting for the coupling of the pendulum (6) to its 
surroundings (23). When the coordinates of 23 are eliminated from the 
equations of motion for all degrees of freedom of GO23 the influence 
of 23 on 6 is found, under certain conditions, to amount to a friction 
force. 

(2) In light scattering experiments on simple liquids one usually 
observes long-wavelength transport processes like heat diffusion and 
sound waves. There is a macroscopic theory of the long-wavelength 
behaviour of liquids, namely hydrodynamics. The set of hydrodynamic 
variables (number density of molecules, energy density, velocity of 
molecules averaged over volume elements large compared to inter- 
molecular distances, etc.) may be looked upon as an open system 6 with 
all other degrees of freedom of the liquid constituting a "surrounding" 23. 
The statistical-mechanical derivation of hydrodynamics requires the 
elimination of the coordinates of 23 from the microscopically complete 
description of the liquid 6 Q 23. 

(3) Experiments on lasers refer to the radiation output (G) and never 
to the active atoms nor the various pump and loss mechanisms (23) 
involved. While the theory has to be based upon a description of all the 
interacting components of the laser system, it is natural that it should 
aim as it has at setting up dynamic equations for the experimentally 
relevant radiation field ( 6 )  alone. 

The physical systems treated in some detail in the present paper are 
the damped harmonic oscillator, superconductors, superradiant devices, 
the laser, and the Heisenberg magnet near the Curie Temperature. In 
these cases we have as the respective open system 6 and its surrounding 
23: the ideal oscillator and a heat bath, electrons ( 6 )  and phonons (23) 
for a superconductor, radiating atoms (G) and radiated light (23) in the 
case of superradiance, radiation field (G) and active atoms as well as 
pump and loss mechanisms (23) for the laser, and, finally, long-wavelength 
(6) and short-wavelength (23) spin fluctuations for the magnet. 

Since the systems mentioned physically have scarcely anything in 
common (beyond being of the structure 6 @ 23), it is not surprising that 
a vast variety of different formal techniques have been used in the 
literature in dealing with them. Rather than giving a survey of various 
formalisms we here present a unified treatment of open systems in terms 
of generalized master equations. 
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Master equations were first introduced into quantum statistical 
mechanics by Pauli [ l ]  to describe the relaxation of macroscopic systems 
into thermal equilibrium. In their original form used by Pauli they are 
rate equations for occupation numbers of quantum levels which are 
dynamically connected by suitably chosen transition rates. Pauli's 
derivation of master equations from Schrodinger's equation was based 
upon the assumption that the expansion coefficients of the wave function 
in an expansion in terms of energy-eigenfunctions have random phases 
at all times. This assumption makes possible a dynamical description of 
the system in terms of occupation numbers of energy levels rather than 
in terms of the complex probability amplitudes of the wave function 
with respect to energy eigenstates. Later work by van Hove [2] ,  Naka- 
jima [3] ,  Zwanzig [4] ,  Montroll [ 5 ] ,  and Prigogine and Resibois [6] 
has shown that the unsatisfactory assumption of continuously random 
phases is unnecessary. Pauli's master equations have proved to be special 
cases of rigorous socalled generalized master equations. For a survey 
of these modern master equations we refer the reader to [7] .  In the 
present paper we will use a generalized master equation constructed 
independently by Nakajima [3] and Zwanzig [4] .  

The Nakajima-Zwanzig theory will be discussed in detail in 
Section 11. Let us at this point make just a few qualitative introductory 
remarks on it. The starting point is the wellknown equation of motion 
for the density operator of the composite system 60 B 

where W(t )  and H denote the density operator and the Hamiltonian, 
respectively. Only that part of the information contained in the Liouville- 
von Neumann equation ( 1 . 1 )  which refers to the subsystem 6 is con- 
sidered relevant. By using a certain projection operator V ( V 2  = y) a 
reduced density operator ~ ( t )  for the open system 6 is obtained from 
the full density operator W(t) .  Schematically, 

which leaves open, for the moment being, how the full density operator 
W(t )  is to be operated upon by the projector 13 to yield the reduced 
density operator ~ ( t ) .  With a suitable definition of what (1.2) precisely 
means one finds that the Liouville-von Neumann equation ( 1 . 1 )  entails 
an equation of motion for the reduced density operator ~ ( t )  of 6 which 
is of the following form 

t 

e ( t )  = - i LCff ~ ( t )  + j dt' K( t ,  t') ~ ( t ' )  + I ( t )  
0 

Expressions for the effective Liouvillian L,,,, the integral kernel K(t ,  t'), 
and the inhomogeneity I ( t )  will be given in Section 11. 

As an illustration of the potential usefulness of the theory behind 
Eq. (1.3) let us briefly mention two different applications. The first is the 
one Nakajima and Zwanzig had in mind when constructing the general 
theory. It is concerned with the above-mentioned problem posed by 
Pauli: how do the occupation probabilities for the energy levels of a 
macroscopic system relax to an equilibrium distribution, starting out 
from some arbitrary initial distribution. To attack this problem Nakajima 
and Zwanzig consider a Hamiltonian H = Ho + H, consisting of a main 
part Ho and a small perturbation HI. The set of all diagonal elements 
(nl W(t)ln) of the density operator with respect to the eigenstates of 
Ho(Holn) = E,ln)) is taken as the open system 6 which interacts with the 
surrounding B constituted by the off-diagonal matrix elements of W(t). 
The projector '!J3 is then chosen as vln) (dl= 6,,. In) (nl whereupon the 
reduced density operator of 6 ,  defined as ~ ( t )  = '!J3 W(t) ,  becomes just 
the diagonal part of W(t )  in the Ho-representation. The procedure 
leading from the Liouville-von Neumann equation ( 1 . 1 )  to the generalized 
master equation (1.3) then amounts to eliminating the off-diagonal part 
of W(t)  from Eq. ( 1 . 1 ) .  Under appropriate conditions for the Hamil- 
tonians Ho and HI and for the initial state W(0) Eq. (1.3) can be shown 
to reduce to Pauli's original master equation [8] .  - The second applica- 
tion we want to mention here has first been made by Argyres and Kelley 
[9] .  These authors consider a spin system ( 6 )  weakly coupled to some 
large system in thermal equilibrium (B),  i.e. a heat bath. The reduced 
density operator ~ ( t )  of the spin system 6 is defined as the partial trace of 
the full density operator W(t)  of 6 0 B, ~ ( t )  = tr, W(t) .  Under suitable 
conditions for the coupling of the spin system 6 to the heat bath B the 
generalized master equation then describes the relaxation of the spins 
into thermal equilibrium. - We have intentionally mentioned these two 
applications here, partly because of their historical importance but 
mainly because they are so different physically. They indicate the re- 
markable flexibility of the Nakajima-Zwanzig theory. 

In spite of the flexibility of the generalized master equation (1.3) 
stressed above there are limits to its practical usefulness which it is 
appropriate to underscore here as well. If Eq. (1.3) is to be used in describ- 
ing the motion of a given open system, the rather involved formal 
expressions for the integral kernel K(t)  and the inhomogeneity I ( t )  have to 
be evaluated explicitly first. The evaluation of K and I generally requires 
series expansions of these quantities. If for a given problem there are no 
small dimensionless parameters in terms of which such expansions can 
be generated, the generalized master equation (1.3) remains an empty 
concept. We will therefore put special emphasis, in all the applica- 
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tions to be presented in this paper, on identifying the respective relevant 
small parameters. 

The paper is organized as follows: Section I1 gives a detailed 
discussion of the projector technique. In Sections 111 through VII we 
discuss the applications to linear damping phenomena, superconductors. 
superradiance, lasers, and the critical dynamics of the Heisenberg magnet. 
Each section is headed by a separate introduction. 

2. Generalized Master Equations 

2a) Introductory Remarks 

We here derive and discuss various modifications of the generalized 
master equation (1.3), using Zwanzig's projector technique. The first case, 
considered in subsection (2b) is that of a closed system 6 0 2 3  whose 
Hilbertspace $,,, has the property 5jEes = G5 0 h .  The reduced 
density operator of the open system 6 is g(t) = tr, W(t). Next, in sub- 
section (2c) we drop the condition that 6 @ '$3 be closed. If 6 @ 23 is an 
open system itself since there are time-dependent external fields acting 
on it, the Hamiltonian H(t) and the Liouvillian L(t) display an explicit 
time dependence; consequently, operator products occuring in the 
generalized master equation for g(t) of 6 have to be time-ordered. On the 
other hand, G @ 23 may be an open systkm because it moves irreversibly 
under the influence of some other system 6; in such a case the equation 
of motion for Yt) of 60% may still be, in simple cases, of the structure 
W =  - i L W; however, the Liouvillian is no longer defined as the com- 
mutator with a Hamiltonian; yet a generalized master equation still 
governs the behaviour of g of G. Then, in subsection (2d) we deal with a 
situation where the dynamics of G 0 2 3  is described by a reversible 
or irreversible equation of motion for a quasiprobability distribution 
W over c-number variables; this equation of motion is assumed to be a 
first-order differential equation in time, i.e. to have the form w = - i L W; 
the set of c-number variables is separated in two subsets. G and 23; the 
generalized master equation for a reduced quasi-probability distribution 
e over the set of variables 6 is derived; this is the most general version 
of the Nakajima-Zwanzig equation, since it holds regardless of the 
structure of the Hilbertspace $,,, and of whether the motion of G @ 23 
is reversible or irreversible. Finally, in subsection (2.e). we use a formal 
integral of the generalized master equation (1.3) to construct expressions 
for multi-time correlation functions of observables of the open system 6; 
these expressions can be evaluated once the solution of Eq. (1.3) is known; 
they can also be used to generate hierarchies of equations of motion for 

correlation functions or Green's functions which it may be easier to 
solve than the generalized master equation (1.3) itself. 

Each of these modifications of the original Nakajima-Zwanzig 
equation will be needed in one or s,everal of the applications given later 
in Section 111-VII. 

2b) Open System 6 as Subsystem of a Closed System 6 @ 23 

We consider a closed system 6 @ 23 composed of two interacting parts, 
6 and 23. The observables of G(23) are represented by operators 
S,, S,, ...( B,, B,, ...) in a Hilbertspace be(%). The Hilbertspace 5jGos 
of the composite system is the direct product $,,, = $, 8 6,. Physically, 
this means that 6 and 23 become physical systems, each in its own right, 
if their interaction is switched off. The state of 6 @ 23 is described by the 
density operator W(t) which obeys the Liouville-von Neumann equation 

~ ( t )  = - ( i / A )  [H, W(t)] = - i L W(t) . (2 b. 1) 

The Hamiltonian H and, correspondingly, the Liouvillian L consist of 
three parts 

referring to the free motion of 6 and 23 and an interaction, respectively. 
If the solution W(t) of Eq. (2b.l) is known, expectation values of observ- 
ables of G @ 23 may be evaluated as, e.g., 

(Bi S,) = tr B, Sj W. (2 b. 3) 

We now assume that only 6 is experimentally relevant, i.e. that the 
interesting expectation values are 

(S, S, ... S,) = tr S, S, ... S, W(t). (2 b.4) 

Since the trace operation can be carried out in two steps, 

tr = tr, tr, , (2 b. 5) 

the expectation values of observables of G can be written in terms of the 
reduced density operator of G 

(S, S, ... S,) = trGS1 S2 ... S,g(t). (2b.7) 



This suggests to look for a "closed" description of the dynamics of 6, 
that is to construct an equation of motion for the experimentally relevant 
reduced density operator ~ ( t ) .  Such an equation should follow from the 
Liouville-von Neumann equation (2b.l) by eliminating from it the 
coordinates of the irrelevant subsystem 23. In fact, such an elimination 
can be carried out formally using a method designed by Nakjima [3] 
and Zwanzig [4]. Let us briefly sketch this procedure. The full density 
operator W(t) is decomposed into two parts using a projector 

W(t)='p W(t)+(l- 'p) W(t), ' p 2 = ' p .  (2b.8) 

The projector 'p is defined as 

'p = Ere, tr, , tr, Ere, = 1 . 

As a consequence of this definition 

'p W(t) = Ere, Q(t) 

is the relevant part of W(t) containing all information with respect to 
the subsystem 6 whereas the irrelevant part (1 - 'p) W(t) takes up the 
information with respect to the subsystem 23 and to correlations between 
G and 23. The parameter Ere, occuring in 'p may be chosen arbitrarily 
within the indicated constraint of normalization, tr,Bref = 1. As we will 
see below it plays the role of a reference state of the system 23 to be 
eliminated. The physically important qqestion of how to best choose this 
reference state will also be discussed at the end of this subsection. The 
formal operations to be presented now are independent of how Ere, is 
chosen. By inserting the decomposition (2b.8) in Eq. (2b.l) and acting 
on this equation from the left with 'p and (1 - 'p). respectively, we get 
two coupled equations for 'p W and (1 - 'p) W 

The second of these equations can be integrated formally to yield the 
irrelevant part of W(t), (1 - 'p) W(t), in terms of the relevant part '$3 W(t) 

(1 - 'p) W(t) = exp[ - i(1- 'p) Lt] (1 - 'p) W(0) 
t 

- i l dtlexp[- i(1- 'p) Lt'] (1 - 'p) L'p W(t - t l ) .  
0 

A closed equation of motion for the relevant part, 'p W(t), is then obtained 
by inserting the formal integral (2b.12) into the first of Eqs. (2b.11). This 
gives, after performing the partial trace tr, the generalized master 
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equation for the reduced density operator ~ ( t )  of 6 
t 

h(t) = - i LC,, ~ ( t )  + l dt' K(tl) ~ ( t  - t') t I(t) . (2b.13) 
0 

The effective Liouvillian L,,,, the integral kernel K(t), and the inhomo- 
geneity I(t) come out as 

Leff = tr,LBref = LG + tr, L~,Bref 
K(t) = - tr,Lexp[- i(l - 'p) Lt] (1 - Slp) LEI,, 

= - tr, L,, exp C - i( 1 - Cp) Lt l (1-  V )  (&I + L,,) Ere, (2b.14) 

I( t )= -itr,Lexp[-i(l -'p) Lt l (1-  'p) W(t=O) 

= - itr, L,,exp[- i(l  - 'p) Lt] (1 - 'p) W(0). 

In simplifying these expressions we have used the decomposition (2b.2) 
for the Liouvillian L and the identities 

tr,&=O 

tr, L, = L, tr, 

following from the cyclic invariance of the trace and the commutativity 
of operations in !ij, and !ij,, respectively. 

The generalized master equation is an inhomogeneous integro- 
differential equation in time. It describes how the open system 6 moves 
under the influence of 23. It is formally exact. Together with the relation 
(2b. 12) it is equivalent to the Liouville-von Neumann equation (2b. 1). 
In the trivial case of no interaction between G and 23 it reduces, of course, 
to the Liouville-von Neumann equation h = - i L,Q for the then closed 
system 6. 

For later use we want to provide ourselves with a formal integral 
of the Nakajima-Zwanzig equation (2 b. 13) 

t 

~ ( t )  = V(t) ~ ( 0 )  + l dt' V(tl) I(t  - t') . (2b.16) 
0 

This defines the integral operator V(t) such that V(t) ~ ( 0 )  solves the 
homogeneous part of Eq. (2b.13). We may look upon V(t) as a time 
evolution operator for 6 since it uniquely relates the density operator 
~ ( t )  with its initial value ~ ( 0 )  if the inhomogeneity I(t) is known. The 
definition of V(t) implies the following formal properties 

v(t) = - iL,, v(t) + i d t l ~ ( t l )  v(t - tt) 
0 

V(0) = 1 (2b.17) 

tr, V(0) = tr, . 
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Let us now discuss the conditions under which the Nakajima-Zwanzig 
theory sketched above can be put to practical use. A necessary condition 
certainly is that it must be possible, for a given physical system, to 
explicitly evaluate the rather involved formal expressions (2b.14) for 
K(t) and I(t). Such an evaluation in general requires a perturbation 
expansion ofthe exponential exp[- i(1- '!@) (L, + L, + L,,)t] occurring 
in (2b.14) in terms of the interaction Liouvillian L,,. The resulting 
perturbation series for K(t) and I(t) are easily written down formally and 
read, for the Laplace transforms of these quantities, 

= - i C tr,LQS U(Z) [- i(1- '!@) L,, U(z)In(l - '!@) W(0) 
n = O  

with 

However, these perturbation series make sense only if they can be 
identified to go in terms of a small dimensionless parameter which is, 
formally, O(L,,)/O(L, + L,). If the interaction between 6 and 23 is too 
strong for the expansions (2b.18) to converge, the Nakajima-Zwanzig 
equation is in general use,less. If, on the other hand, the series do go in 
terms of a small dimensionless parameter, the use of the generalized 
master equation offers substantial advantages over other methods of 
evaluating ~ ( t )  as, e.g., the perturbation theoretical solution of Eq. (2b. 1). 
This latter method proceeds by expanding the time evolution operator in 
e(t) = tr,exp[- i(L, + L, + L,,)t]. WO) in terms of L,,. It is easy to see 
that an infinite number of terms of all orders of this elementary perturba- 
tion expansion have to be summed up in order to recover a given finite 
order approximation to the series (2b.18). 

Another point we want to discuss here concerns the physical meaning . 
of the parameter B,,, occurring in the definition (2b.9) of the projector '!@ 
and the question of how to best choose it. Let us emphasize again that 
the Nakajima-Zwanzig equation (2b.13) holds whatever choice for B,,, 
is made, as long as tr,B,,, = 1. The formalism thus doesn't tell us how 

to choose this parameter. What we do see, however, from Eq. (2b.18), is 
that the influence of 23 on 6 expresses itself in terms of correlation 
functions tr, B,(t,) B2(t2). . . Bn(t,,) B,,,. Here the Bi are the observables 
of 23 occurring in the interaction Hamiltonian. Their time evolution is 
due to  the free motion of 23 governed by the evolution operator 
exp[- iL,t]. The state in which these correlation functions are to be 
evaluated is the parameter B,,,. This latter thus plays the role of a 
reference state for 23. Therefore, the selection of the reference state 
should be based on the physics of a given system 6 0 2 3  and not much 
can be said in general. More specific statements are possible, e.g., for two 
special classes of problems. (i) If 23 is a large system in equilibrium 
interacting so weakly with a small system 6 that the equilibrium of 23 
is hardly disturbed then a reasonable choice for B,,, is, of course, the 
unperturbed equilibrium density operator of 23. (ii) If 6 and 23 influence 
each other strongly - the expansions (2b.18) being possible though - and 
if the behavior of 6 near a stationary regime is to be investigated, then 
the best possible reference state B,,, for 23 can be evaluated selfconsistently 
in the following way. First ~ ( t )  is calculated with the expansions (2b.18) 
truncated at some order n with B,,, unspecified. Then, using (2b.12), 
(1 - '!@) W(t) is evaluated in terms of ~ ( t )  with the expansions for 
the exponentials in (2b.12) carried up to order n. The stationary 
density operator of 23 is then obtained as B = tr,{'!@ W(t+co) 
+ (1 - '!@) Wt + co)). Identifying B with B,,, one obtains an equation for 
the reference state of 23. If such a procedure is carried out, the density 
operator ~ ( t )  of 6 as well as the stationary density operator B of 23 are 
determined by a selfconsistent systematic perturbation scheme. - Let us 
stress again that a physically well-motivated choice of the reference 
state B,,, of 23 is not required for the generalized master equation (2b.13) 
to hold. It is, however, necessary to make a good choice for B,,, in order 
for the theory constituted by (2b.12), (2b.18) to give a reasonable descrip- 
tion of the physical processes in question in low-order approximations 
of the expansions (2b.18) - if a low-order description is possible at all. 

2c) Subsystems 6 of Open Systems 6 0 23 

6 0 23 may be an open system since there are external time-dependent 
fields acting on it. Then the Liouville-von Neumann equation (2b.l) is 
replaced with 

That is, the Liouvillian L(t) displays an explicit time dependence. Since 
the commutator [L(t), L(tl)] need not vanish we have to introduce a 
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time-ordered product in Eq. (2b.12) which thus becomes 

(1 - '$) W(t) = - i T exp 
(2c.2) 

- j dtf Texp{- i j 
0 1' 

Here T is the usual time-ordering operator. The Nakajima-Zwanzig 
equation now reads 

t 

h(t) = - i Leff(t) e(t) + j dtlK(t, t') e(tl) + I(t) 
0 

Leff(t) = tr,L(t) Bref (2c.3) 

K(t, t') = - tr, L(t) T exp 

We will need this version of the generalized master equation in Section 2e 
in order to calculate correlation functions of observables of 6. 

On the other hand, G  @ 23 may be an open system moving irreversibly 
under the influence of some other system CS. The motion of G @ 23 may 
then, of course, be described by a Nakajima-Zwanzig equation of the 
form (2b.13). We here consider - in viqw of the applications to be given 
later - the simple case where CS is a larie system characterized by relaxa- 
tion times much shorter than those of G @ 23. In such a case we may 
neglect retardation effects in the Nakajima-Zwanzig equation for the 
density operator of 6 @ 23 - which we keep denoting by W(t) - and thus 
obtain the Markovian master equation 

with 
m 

A = L e f f + i  j dtK(t) .  
0 

The quantities Leff and K(t) are given by (2b.14) with the symbols occurr- 
ing there appropriately reinterpreted: L is the Liouvillian of G  @ + 23 @ CS, 
'$ = Cref tr, is the projector used to eliminate the coordinates of with 
Cref as the reference state for CS. It is easily checked that the Liouvillian A 
generating the time evolution of the density operator W(t) of G @  23, 
although no longer being of the form A = [H, . . .], conserves probability, 
i.e. 

tr,.,A=O. (2c.6) 

We now assume that only the subsystem G of G @ 23 is of experimental 
relevance and thus construct the equation of motion for ~ ( t )  = tr, W(t). 
By going through the arguments of Section 2b again we find that ~ ( t )  
obeys the Nakajima-Zwanzig equation (2b.13) with A = A, + A, + A,, 
as Liouvillian instead of L. This is so since at no point in Section 2b we 
have made use of any properties of L other than tr L = 0, tr,& = 0 and 
tr, L, = L, tr, which A has, too. 

2d) Quasiprobability Distribution Functions 

For some applications of the Nakajima-Zwanzig equation it is advan- 
tageous to describe the state of the system by a quasiprobability distribu- 
tion of a complete set of observables rather than by a density operator. 
The observables are then represented by c-numbers variables1 

S,, S,, ... B,, B,, ... corresponding to operators 3,,  S,, ..., B,, B,, ... 
such that quantum-mechanical expectation values are given as moments 
of the quasiprobability distribution function W(Si. Bi, t) 

Here the symbol 

denotes an integration over all variables Si and Bi. It is always possible 
and can be very convenient to use such a c-number description since it 
sometimes reveals a physical process in question to be closely related to 
some classical random process. The c-number formalism can thereby 
help to gain physical insight and to find an adequate approximate 
treatment for the system considered. For detailed discussions of the 
mathematical properties of quasiprobability distributions we refer the 
reader to [9-141. If the density operator w obeys a first order equation 
of motion in time, the associated quasiprobability distribution W(Si, Bi. t )  
can be defined such as to do so, too [15]. We then have 

where L is a differential operator with respect to the variables Si, Bi. 

' Whenever necessary, we distinguish operators and associated c-number variables 
by the circonflex on the operator symbol. 
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We now assume that only the variables Si are of direct experimental 
relevance and therefore consider the reduced quasiprobability distribu- 
tion function 

I t  is easy to see, using (2d.4), that Eq. (2d.3) implies a Nakajima-Zwanzig 
equation for e(Si, t). This latter reads like Eq. (2b.13) but all symbols 
occurring there have to be appropriately reinterpreted. Especially, the 
projector now is 'p = Bref(Bi) 3, and the reference state Bref(Bi) is a 
quasiprobability distribution for the variables Bi. 

The c-number formalism just sketched becomes especially useful 
under the following circumstances. Suppose the separation of the set of 
variables {S,, Bi) in two subsets {S,) and {B,) does not correspond to a 
separation of the physical system G @ 23 in two subsystems G and 23 with 
Hilbert spaces $3, and $3,, respectively. It is then impossible to define a 
reduced density operator e(t) = tr, ~ ( t ) ,  since the partial trace tr, can- 
not be defined. It is possible, howevq, to construct the reduced quasi- 
probability distribution function by k2d.5). We will make use of this 
fact in Section 7. 

2e) Correlation Functions of Observables of G 

We here want to show how correlation functions of the observables Si 
of the open system G can be evaluated once the Nakajima-Zwanzig 
equation (2b.13) for the reduced density operator ~ ( t )  is solved. To this 
end we follow Haken and Weidlich [16] and couple the system G to 
fictitious time-dependent external fields ai(t), yi(t) such that the Liouvillian 
becomes 

L(C)= L +  l(a, y, t ) .  (2e. 1) 

There L = L, + L, + L,, is the time-independent Liouvillian encounter- 
ed before. The additional term /(a, y, t) is defined to act on some operator 
X as 

l(a, y, t )X = C {ai(t) S i x  - yi(t) XS,) . (2e.2) 
I 
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Since the density operator of G may now be written as2 

@(a, y, t) = tr, T exp 

we have the following identity for correlation functions of the S, 

- - 1 6" 6"' 
(2e.3) 

( - i)"(i)"' hai, (t,) . . . 6ai,(tn) 6yii (t;) . . . 6yik,(t;,) 

We have written down this expression For the case ti _I ti+ ti =( ti+ 
More general time orderings can be treated correspondingly. The 
symbols 6/6a(t) and 6/6y(t) denote variational derivatives. As a next step 
we exploit the fact that the fictitious fields ai(t) and y,(t) enter the identity 
(2e.3) for the n + n' points of time ti, tj only. Without loss of generality 
we may therefore simplify the time-dependent part /(a, y , t )  of the 
Liouvillian L(t) to 

n i n '  

l(a. 1: t) = C 6(t - t,) 1, 
p =  1 

a,S,X for r, = ti 
1,X = 

for t ,=t ; .  

Then the variational derivatives in Eq. (2e.3) are replaced with partial 
derivatives with respect to the parameters a,, y,. 

In order to evaluate the correlation functions Knn.(ti, ti) we thus have to 
first calculate the generating functional @(a, y, t) which is the density 
operator of G in the presence of the fictitious fields ai(t) and yi(t). We can 
determine @(a, y, t) by solving the Zwanzig-Nakajima equation (2c.3) 
with the time-dependent Liouvillian (2e. 1). By accounting for the special 

The time ordering operators T(?) arrange operators from left to right (right to left) 
according to increasing time arguments. 



112 F .  Haake: Statistical Treatment of Open Systems by Generalized Master Equations 113 

structure (2c.4) of l(a, y, t) the equation of motion for the generating 
functional may be written as, for t, < t < t,+ 

t 

h(a,y, t) = - iLeff e(a,y, t) + l dtlK(t - t') e(a, y, t') +I,@) . (2e.6) 
f u 

In Leff and K(t) the fictitious fields a, y don't occur. These quantities are 
thus given by Eqs. (2b.14). The inhomogeneities I,(t), however, do 
depend on the fictitious fields a, y and read 

~ , ( ~ ~ , t ) =  -itr.~~.e-i(l - V ) L ~ l e i l u e - i ( l  - 1 )  

. e - i l u - ~  . . .e- i l~ e - i ( l  -%)I l l  (1 - '$) W(0) 

and, for p = 0, 

Io(t) = I(t) = - itrg,~,,e-i(l-"'L'(l - '$) W(0) 

In bringing the Nakajima-Zwanzig equation (2c.3) to the form (2c.6) 
we have used the time 'ordering prescription to arrange all operators 
properly with t, t,+ ,. We also have carried out some time integrals 
according to 

Because of '$(I - '$) = 0 and, by the definition of I,, 'PI ,  = I,% we have 
replaced (1 - '$)I, by I, everywhere. It is interesting to note that the 
inhomogeneity I,(t) contains the generating functional e(a, y, t) for 

preceding time intervals, i.e. for t < t,. These terms may be looked upon 
as being determined by solving Eq. (2e.6) for the preceding time intervals. 

As indicated explicitly, Eq. (2e.6) governs the behavior of the 
generating functional between the "jumps" at the times t, and t,+l,. At 
these times e(a, y, t) changes discontinuously according to the 6-functions 
in /(a, y, t). It is important to realize that we need to know the magnitudes 
of the jumps of e(a, y, t) to first order in the parameters a,, y, only. Higher 
order terms do not contribute to the correlation functions Knn.(ti, ti) 
as is seen from Eq. (2e.5). To first order, the jump is determined by the 
first term in the right member of Eq. (2c.3). namely by 

By using Eq. (2e.4) we find 

The problem formulated by Eqs. (2e.6) and (2e.8) is to integrate (2e.6) 
stepwise from jump to jump accounting for a new initial condition (2e.8) 
at each t,. This program can be carried out formally using the time evolu- 
tion operator V(t) defined in (2b.17). For t > t, we obtain 

f 

g(a,y,t)= V(t-t,)e(a, y, t,+O)+ l dtrV(t-t1)I,(t') 
1u 

t (2e.9) 
= V(t - t,) (1 - il,) ~ ( a ,  y, t, - 0) + l dt' V(t - t') I,(tf) . 

f u 

By putting together the solutions for all preceding time intervals we 
finally get 

e(a,y , t )=V(t- t , ) ( l - i l , )V(t , - t ,  -l)(l-il ,-1). . .V(t2-tl) 

-ill)  V(tl)e(0) 

+ V(t - t,) (1 -il,,) V(t,- t,- (1 - il,-l)... V(t2 - tl) 
f 1 

. (1 - ill) l dt' V(tl - t') I0(t1) 
0 

+ V(t -t,)(l -ilJ V(t,,-t,,-l)(l -il,-l)... V(t3-t2) 
1 2  

. (1 - i12) J dt' V(t2 - tl) I1(t1) 
f 1 

t u 

+V(t-t,)(l-il,) l dt'V(t,-t')I,-l(t') 
f u - 1  

f 

+ dt' V(t - t') I,(tf) . 
f u  



This expression is not yet rully explicit sinct, as mentioned above, the 
inhomogeneilies I,(t) contain ~ ( a ,  y. I) d preceding time intervals. We 
relrain however, from writing down the fully explicit exprssion as its 
kngth makes i t  even less enlightening than the one given above 
la discussing (2e. 10) we remark that tbe first term occuring on the right 
h a d  side is distinguished from all the other% It would be the only om 
to appear in the trivial special d no interaction between G and Itl 
since, according to Eq. (2e.n all I,(q vanish identically for b, = 0. 
Then the time evolution operator V(t) d course degenerates to the 
unitary operator exp( - i &rl M is another spacial GW in which all 
the i,(t) vanish or rather are negligible. namely iC G undergoes a Mark* 
vian motion under the influence d S [l6]. We shall show this below. 

It is now a straightforward marrer to carry out the prescription (2e.5) 
on p(a, 7. I )  as given by (2e. 10) and to write down the expression for t he 
correlation runction K,,(r,, ti). We will not do that for the general 
K,,(ri, 1;) since the resulting formula is kngthy and will hardly ever be 
needed Liel w rather illustrate the steps to be taken for the imponant 
special case d equilibrium correlation functiollg In equilibrium we have 

and 
4 

p(i) = V(t)  4(0) + 1 dl' V(t - 17 &It') = ~ 4 0 1 .  
0 t 

i 
For the simples! tw*times wrrelat~on Function we then obtain. lor 
t l  - e l  20, 

Correspondingiy. again for r,  - I ,  2 0. 

Statistical T-I 4-n Systems by Gmcralized Mwer Equalions 

As a last example we consider tbe four-time correlation function 

where t; 2 I ; ,  r,  2 I ,. Sin= such correlation runctions with "pyramidal" 
time order are encountered in quantum optics mainly we evaluate 
(2e. 14) lor the special case d the so cded  intensity correlation function 
for a mode d an electromagnetic field 

Here b and bt are the annihilation a d  mation operator d photons 
in the field mode G considered The surrounding 93 d the field mode is. 
tor a lac, conslit utsd by active atoms and pump and loss mechanisms. 

In case of need other wrrelalion [unctions can be constructed anal- 
ogously. The resulting expressiotls become rather lenglhy for n+n' 
increasing. However, in the above-mentioned spxlal case d a  Markovian 
motion d G even the general formula Tor K J r ,  r3 is easily written 
down and has a rather cornpad appearance. To w the simplificttions 
then possible we first discuss the behavior of the time evolu~ion operator 
Y( t )  which obeys the equation of motion (2b.17). 

As already discussed in s u b i o n  2b - following Eq. (2b. 18) - the lime 
dependence of I he integral kernel is determined by that of unpenurbed 
correlation functions d obsemables of 6. Now it 93 is a hrge system 
with internal relaxation t i m e  t, very short compared to the relaxation 
limes r ,  of G (i.e. of V(t ) ) ,  we cab tor times t + r,  ncgka rt~ardation 
effects in the equation d motion for V(t) and thus have 

with 

By a similar argument one shows that the inhomogeneities [,,(I) in 
Eq. (2e.7) are manirestaliorrs of memory dects and vanish in the Mar- 
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kovian limit T,/T, x 0. Then we immediately find from Eqs. (2e.5) and 
(2e.10) 

(Sl (t 1) S;(t2) . . . SXtn) Sn(t3 s n  - l(t. - 1) . . . SZ(t2) Sl (t 1)) 

=trGSnV(tn-tn-l) [Sn-l V(tn-l - - t n -2 )  (2e. 17) 

. [Sn-2.. .S,v(t2 - t l )  [S, V(t,) ~ ( 0 )  S;] S2].. .sn-2] sn-l] s n .  

This quite wellknown expression [16-211 may be looked upon as a 
generalized fluctuation-dissipation theorem, valid for quantum mechani- 
cal Markov processes. It relates the mean irreversible motion of 6 - as 
characterized by the time evolution operator V(t) - to fluctuations in 6 - 
as expressed by correlation functions of observables of 6 .  

Let us conclude with a few remarks on where and how the above 
expressions for the correlation functions Kn,( t i ,  ti) can be used. One 
application is obvious. If for a given system the Nakajima-Zwanzig 
equation is solved, that is if the time evolution operator V(t) is known, 
the above results allow an explicit evaluation of the Knn,(ti, ti). On the 
other hand, the formal expressions for the Knn, can be used to construct 
hierarchies of equations of motion for correlation functions or Green's 
functions. Such hierarchies may be easier to solve than the Nakajima- 
Zwanzig equation itself. We shall illustrate this use of the above results 
in section 4 in our treatment of superconductivity. 

! 
L 

3. Linear Damping Phenomena 

3a) Introductory Remarks 

We here want to illustrate the applicability of the Nakajima-Zwanzig 
theory to damping phenomena in microscopic systems as produced by a 
weak coupling to large systems in thermal equilibrium. As already 
stated in Section 1, the first such application was made by Argyres and 
Kelley [8] in a treatment of spin relaxation. We will briefly review their 
results in subsection 3c. The main body of this section, subsection 3b, 
will be concerned with an even simpler but no less important case, the 
damped harmonic oscillator. 

Linear damping phenomena can be and have been treated by other 
methods as well. Wangsness and Bloch [22] have treated spin relaxation 
by constructing and solving a master equation for the density operator . 
of the spin system. Their investigation follows the lines suggested by 
Pauli [I] and especially uses Pauli's assumption of repeatedly random 
phases which we have discussed in Section 1. In the same spirit the damped 
harmonic oscillator has been dealt with by Weidlich and Haake [23]. 

The advantage of the modern theory of damping phenomena using the 
techniques of Nakajima and Zwanzig over the older theories using Pauli's 
method is twofold. First, the theoretically unsatisfying assumption of 
repeatedly random phases can be avoided and second, more complicated 
phenomena like non-Markovian damping effects, inaccessible to Pauli's 
method, can be handled quite easily. - There is another way of dealing 
with linear damping phenomena, first laid out by Senitzky [24] and later 
generalized by Mori [25]. These authors describe the dynamics of the 
open system 6 and the heat bath 23 in the Heisenberg picture. By eliminat- 
ing the observables of 23 from the Heisenberg equations of motion for 
the observables of 6 0 2 3  quantum mechanical Langevin equations for 
the observables of 6 are obtained. These methods will not be considered 
in the present paper. We want to emphasize, however, that they are 
equivalent to the Nakajima-Zwanzig method, just as Schrodinger 
picture and Heisenberg picture are equivalent. 

3b) The Damped Harmonic Oscillator 

We consider an ideal oscillator G coupled to a heat bath 23. The heat 
bath is required to have the following properties. (i) It is in thermal 
equilibrium before the interaction with the oscillator is switched on. 
(ii) It is a very large system with internal relaxation times T, very short 
compared to the relaxation time T, of the oscillator which is to be deter- 
mined. (iii) It is sufficiently large and so weakly coupled to the oscillator 
that its thermal equilibrium is never disturbed appreciably by the 
oscillator. We shall first naively use and later discuss in some more detail 
these three conditions. 

The Hamiltonian of the free oscillator is 

where the (Bose) operators b and bt annihilate and create, respectively, 
quanta of energy hw in the oscillator. The free heat bath Hamiltonian H, 
need not be specified. The interaction Hamiltonian He, we choose as 

H,, = h g(bBt + bt B) (3b.2) 

with unspecified dimensionless heat bath operators B and B'. The 
coupling constant g has the dimension of a frequency. More general 
couplings between 6 and 23 can and for some applications even have to 
be considered [18]. 

The density operator ~ ( t )  of the oscillator obeys the Nakajima- 
Zwanzig equation (2b.13). The reference state B,,, for the heat bath 
occuring there can be taken, because of condition (iii) above, as the 
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unperturbed canonical density operator 

Because of condition (ii) both the integral kernel K(t) and the inhomo- 
geneity I ( t )  in Eq. (2b.13) relax on a time scale z, which is much shorter 
than the time scale z, characteristic for the motion of ~ ( t ) .  We therefore 
expect, for times t 9  z,, a Markov approximation to the Nakajima- 
Zwanzig equation to hold 

It is easy to see that the term tr,L,,Bref in A corresponds to a mean 
conservative force exerted on the oscillator by the heat bath. Such an 
effect is easily treated but of no interest in the present context. We 
therefore assume this mean force to vanish. i.e. 

Finally, we take condition (iii) above to imply that third and higher 
order contributions in g to the integral kernel K(t) can be neglected and 
thus get 

cc 

A =  - i  L, - j dttr,LB,e-i(L~+L5" L qs Ere, . (3 b.6) 
0 i 

The evaluation of(3b.6) is a simple exercise. The resulting master equation 
for the oscillator reads 

The influence of the heat bath on the oscillator is characterized by the 
three real parameters A ,  ti, and E. These are found as 

m 

ti + i A  = g 2  j dteio'([B(t), Bt(0)]) 
0 

m 
(3 b.8) 

KE = g ' ~ e  J dtei"'(Bt(0) B(t)) , 
0 

where (...) = tr, . . . Ere, and B(t) = eiH5' B(0) e-'Hm'ih. We see that the 
parameters A ,  K, E are given as Fourier transforms of retarded equilibrium 
Green's functions of the bath operators B and Bt, the Fourier transforms 
being evaluated at the eigenfrequency o of the ideal oscillator. As a 

formal remark we note that ti and A ,  as functions of the "variable" o, are 
related by a dispersion relation. Moreover, and more importantly, the 
two Green's functions determining ti and KE are related by the fluctuation 
dissipation theorem [26]. As a consequence, 

The physical meaning of the parameters K, A ,  and E becomes obvious 
when equations of motion for the oscillator amplitude and the mean 
number of quanta are extracted from Eq. (3b.7): 

We thus see that A is a frequency shift, ti a damping constant, and E the 
stationary number of quanta. According to Eq. (3b.9) the stationary 
number of quanta is what we would expect for thermal equilibrium at 
temperature l//J. By observing that the stationary solution of the master 
equation (3b.7) is3 

we conclude that the heat bath imposes its thermal equilibrium at 
temperature 118 on the oscillator. 

The physical nature of the motion of the oscillator described by 
Eq. (3b.7) is most obviously displayed when this equation is rewritten in 
terms of Glauber's diagonal representation of ~ ( t )  with respect to 
coherent states [11] 

This representation allows the computation of normally ordered expecta- 
tion values (btn bm) as moments of the weight function P(p, p*, t) as 

By using the wellknown commutation relations 

[b, f  (b, bt)] = d f  (b, bt)/d bt 

Cf (6, bt), bt] = a f  (b, bt)/d b 
- ~ 

This is most easily verified in the representation in which the number operator hth  is 
diagonal. 
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the master equation (3b.7) is easily transformed into the following 
differential equation of motion for the weight function P(P, P*, t) [18] 

This is a Fokker Planck equation for a Gaussian Markov process [27]. 
It is known in the theory of classical random processes as the Fokker 
Planck equation of the damped harmonic oscillator [28]. Its solution is 
known as 

where P(P, P*, 0) is the initial P-function and P(P, P*, tip,, PQ) a "ransi- 
tion probability" 

Let us now discuss the assumptions\(ii) and (iii) stated at the beginning 
of this subsection. They can both be formulated in a somewhat more 
quantitative manner. First, the relevant time scale z, for the motion of 23 
is seen to be given by the decay times of the equilibrium Green's functions 
occuring in Eqs. (3b.8). The time scale for the oscillator is K-', i.e. the 
inverse damping constant. The validity of the Markov approximation 
thus requires 

Next, assumption (iii) has been used as a motivation to choose the 
thermal equilibrium density operator (3b.3) as a reference state for the 
heat bath 23 and to approximate the integral kernel K(t) to lowest order 
in the coupling constant g  (Born approximation). As a result, we have 
seen the oscillator relax to the thermal equilibrium state (3b.11) at the 
temperature 1/P of the heat bath. In order to explicitly justify the Born 
approximation we would have to estimate the contribution of all higher . 
order terms in K(t) to A in Eq. (3b.4). Such an estimation cannot be 
carried out in general, that is unless a specific model for the heat bath is - 
considered. What we can do without specifying detailed properties of the 
heat bath, however, is to perform a consistency check on our arguments. 

For the above treatment of the damped harmonic oscillator to be 
meaningful the perturbation of the thermal equilibrium of the heat bath 
caused by the coupling to the oscillator must be negligible. The state of 
the heat bath is given by 

= B , , ~  + trce-i( '-w)Lt(l - (p) W(0) (3 b.19) 

In evaluating the deviation from thermal equilibrium, ~ , ( t )  - Bref, we 
have to make the same approximations used in determining the state ~ ( t )  
of the oscillator. The second term on the right hand side of Eq. (3b.19) 
decays on a time scale z, and may thus be neglected for t 9 z,. The third 
term reads, to order g 2 ,  

Let us consider the diagonal matrix el'ements 

with respect to energy eigenstates. To these the first term in (3b.20) does 
not contribute because of (3b.5). The contribution of the second term is 
easily found, for t 9 z,, to read4 

with 
m 

For the Born approximation to make sense the relative deviation from 
thermal equilibrium must be small, i.e. 

In discussing this condition we will restrict ourselves to a few remarks. 
First, we see that the initial excitation (bt(0) b(0)) of the oscillator must 

To avoid irrelevant complications we here assume (n lBBl n) = 0. 
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not be too high. Moreover, the coupling of 6 and '23 must be such that 
I M , I / K  < 1. TO appreciate this let us write down an in the H,-representation. 

a = a' - a" 
n n n  

By comparison of (3b.22) with (3b.8) we also find 

These expressions suggest to interpret the an as transition rates between 
bath states of energies En and Em. a ;  measures the rate of change of the 
occupation probability of bath states with energy En due to transitions 
n + m  to states with energy Em = En + A o .  Likewise, a: accounts for 
transitions m 4 n  from states with energy Em = En - A o .  We may thus say 
that the smallness of ~ J K  implies that none of the contributions 
(n lBr , , (n )  an to the damping constant K exhaust their sum. For more 
detailed conclusions we refer to [29]. 

3c) Spin Relaxation 

The discussion of spin relaxation is brecisely analogous to that of the 
damped oscillator given above. Therefore and since the literature 
abounds of detailed presentations of spin relaxation theory [8,22,30] we 
here merely write down what we will need in Section 6, namely the 
master equation for a damped spin-i system. It reads, if both the Markov 
and the Born approximations are made and with the energy shifts A 
oppressed, 

The spin operators obey the commutation relations 

The physical meaning of the transition rates 2'1,. yO1, and q becomes clear 
when equations of motion for the expectation values ( s ' )  and ( s z )  are 

extracted from (3c.l). They are related to the transverse and longitudinal 
decay times T2 and T I ,  respectively and the equilibrium z-component 
of the spin by 

Because of the wellknown analogy of spin-i systems and two-level atoms 
the master equation (3c.l) also describes the behavior of a two-level atom 
under the influence of a heat bath. Then the operator 2s' measures the 
population difference for exited state and ground state, whereas s C  and s- 
are the raising and lowering operators, respectively. Eq. (3c.l) may also 
be fancied up to describe spontaneous emission of electromagnetic 
radiation by an initially excited two-level atom [31]. In this case '23 is the 
quantized electromagnetic field into which the atom dissipates its 
excitation energy. 

4. Superconductors 

4a) Introductory Remarks 

The present-day understanding of superconductivity was initiated by 
two ideas. First, there was Frohlich's suggestion to hold the interaction 
of conduction electrons and lattice vibrations responsible for the prop- 
erties of superconducting metals [32]. The validity of this point was 
clearly demonstrated by the discovery of the isotope effect [33,34]. 
Then Cooper [35] realized that the Fermi sea which is the ground state 
for free electrons is unstable with respect to formation of bound electron 
pairs, if there is an attractive interaction between the electrons. The 
BCS-theory [36] synthesized the two hints. Bardeen, Cooper and 
Schrieffer showed that the electron-phonon interaction in a metal can 
indeed produce an effective electron-electron attraction for electrons 
with energies E in the interval E ,  - h w , S  E 5 E ,  +Am, where E ,  
and o, are the Fermi energy and the Debye frequency, respectively. 
As a consequence, the superconducting ground state is a pair condensate 
with respect to these electrons. The lowest excited states, corresponding 
to quasi-particles and quasi-holes in the modified Fermi sea, were then 
found to be separated from the ground state by a finite energy gap A .  
The BCS-theory has since proved to give an at least qualitatively satisfying 
account of the thermodynamic, electromagnetic, and transport properties 
of most superconducting materials [37,38]. Many of the quantitative 
discrepancies between theory and experiment. as found especially for the 
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socalled strong-coupling superconductors like Pb and Hg have been 
eliminated by more sophisticated versions of the original BCS-theory 
[39]. Such sophistications mainly consist in a more detailed treatment 
of the electron-phonon interaction which Bardeen, Cooper and Schrieffer 
accounted for in terms of two parameters only, the Debye frequency w, 
and a coupling constant measuring the strength of the effective electron- 
electron attraction. The ensuing generalizations of the BCS-theory, 
obtained by Eliashberg [40] and Scalapino et al. [41] can be charac- 
terized as follows. First, the effective attraction between electrons 
produced by exchange of virtual phonons is a retarded interaction 
rather than an instantaneous one. As a consequence, the gap-parameter A 
assumes a time dependence or, equivalently, a frequency dependence, 
A-+A(w). This frequency dependence is closely related to the phonon 
spectrum. Second, real phonons can be created and annihilated in the 
course of electron collisions. This effect causes the elementary excitations 
in the superconductor to have finite life times. Formally, the gap param- 
eter becomes a complex number, A(o) = A,(o) + iA2(w). By measuring 
the tunnel current from a superconductor to a normal conductor through 
a thin insolating layer the complex frequency-dependant gap parameter 
A(o) can be determined experimentally. Experiments on the strong- 
coupling superconductors Pb and Hg have satisfyingly confirmed the 
predictions of Scalapino et al. [41]. 

The following treatment of superconductivity does not present 
anything physically new. It is meant at a demonstration of the applicabi- 
lity of generalized-master-equation techniques to nontrivial many-body 
problems. For this purpose it may suffice to consider a somewhat 
simplified model Hamiltonian for the interacting electrons ( 6 )  and 
phonons (23) 

Here c L  and c,, create and annihilate, respectively, electrons with 
spin a, wave vector k, and energy E,. The electron energies E ,  are measured . 
from the unperturbed Fermi level. The electron operators obey Fermi 
commutation relations. The (Bose) operators bf and b, create and 
annihilate, respectively, phonons with wave vector q and energy w,. The 
interaction is characterized by a coupling constant g,. A realistic theory 

would have to account for the Coulomb interaction in HE, more than 
one phonon branch in H,, and a more general coupling g,,,,. 

We will calculate the following (retarded) Green's functions 

where [ ..., ... ]+ denotes an anticornmutator and 

(. . .) = tr,, tr,, . . . eBH/ t r e ,  trphe-BH 

The one-particle Green's function G(k t) contains all information about 
the behavior of single electrons, that is, e.g., the quasiparticle excitation 
spectrum. The anomalous Green's function or pair amplitude F+(kt)  
vanishes identically for normal electron systems because of electron 
number conservation. Its nonvanishing for superconductors siquals 
that number conservation is broken because of pair condensation. 
According to Yang [42] F +  + O  implies off-diagonal long range order 
in the electronic system. 

The Heisenberg equations of motion for electron and phonon 
operators imply equations of motion for G(kt), F+(kt)  and mixed 
electron-phonon Green's functions of more complicated structure. If the 
hierarchy of equations for all these Green's functions is suitably organized 
by using a method developed by Martin and Schwinger [43], a systematic 
perturbation expansion for G(kt) and F+(kt)  can be generated. This 
method was used in [40,41]. Our procedure will be based on first 
eliminating the phonon degrees of freedom and then consider Nakajima- 
Zwanzig-type equations of motion for electron Green's functions. 

4b) The Electrons as an Open System 

In order to generate equations of motion for the Green's functions 
G(kt) and F+(kt )  we express these quantities in the form (2e.12) and 
(2e. 13) 

= i @(t) tr,, S2 V(t) [S,, Q'~']+ 
f 

+ @(t) j dt' tr,, S2 V(t - t') tr,, L,,-,, e-"' -wL" 
0 

Since we are considering a thermal equilibrium problem the initial 
density operator W(0) of the composite system 6 (electrons) @ 23 (pho- 
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nons) is taken as the canonical operator 

W(0) = e-aH/trel trph eCaH . (4 b.2) 

The projection operator !# used to eliminate the phonon coordinates, is 

with the free canonical operator 

Bref = e-flHph/trph e-oHph 

as the reference state for the phonons. The equation of motion (2b.17) 
for the time evolution operator V(t) can be simplified a bit because of 

We then have 

The integral kernel in this equation can be expanded in terms of the 
coupling constant gq according to (2b.18). By an argument similar to  
Migdal's [44] it is easily shown tha# such an expansion actually goes 
in terms of the ratio (m/M)'I2 of the electron mass and the mass of an ion 
in the lattice. Since m/M 6 1 we can approximate the integral kernel in 
lowest order (Born approximation) to get 

By differentiating (4b.l) with respect to time and using (4a.l) we find, 
after some lengthy but trivial algebra, the following equations for G(kt) 
and F + (k t) 

and (4 b.8) 

t 

- i j dtl x D(-)(q, t') e+i~k-qr ' .  1@(t - t Y )  
0 k'o'q 

The influence of the phonons on the  electrons expresses itself here in 
terms of the unperturbed equilibrium lphonon Green's functions 

D("(9 t) = i @(t) tr,, Cvq(t), v-,(O)I * 4 , f  

with 

D(+) and D(-) are related by the fluctuation-dissipation theorem [26]. 
The further treatment of Eq. (4b.8) follows standard lines. First, the two- 
particle Green's functions occurring on the right hand sides are de- 
coupled by a mean field ansatz 

and 

This generalizes the Hartree-Fock approximation to include the pair 
amplitude F+(k  t). The equilibrium expectation values n(k) and f (k) 
appearing in (4b.10) are related to the Fourier transforms of G(k t) and 
F+(kt)  by wellknown spectral theorems [26] 

+ i dt' 1 D(-)(q. t') e-"k-qt'i@(t - t') 
0 k'a 'q 
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We will not discuss the limits of validity of the mean field approximation 
(4b.10). We should mention, however, that for bulk superconductors8 
there is no experimental indication for the mean field theory to break 
down [45]. Moreover, Boguolyubov [46] has shown that for a slightly 
simplified model system the decoupling (4b.10) becomes exact in the 
thermodynamic limit. By inserting (4b.10) in (4b.9) and Fourier trans- 
forming with respect to time we get the following generalizations of 
Gorkov's equations 

with 

@, (k, E) = 1 D' -'(k - k', E + EL,) f (k') 
k' 

Z,(k, E) = 1 [${D'-'(k - k', E f E ~ . )  T D(+)(k - kf, E f E ~ ) }  (4b. 13) 
k' 

- D(-'(k - k', E f E,.) n(kl)] . 

For the four renormalization amplitudes we find four coupled non- 
linear integral equations by inserting in (4b.13) the spectral theorems 
(4b. 1 1) : 

@,(k, E) = - ( 2 ~ ) -  1 D'-)(k - k', E _f Ek.) 
k' 

L + m 

. 5 2(1+ e-P") d o .  I m .  
- m 

@+(kf ,o  + iO) 
[o-E~.  + Z-(k:o + iO)] [o + ~~, -Z+(k ' ,o  + iO)]-@+(k',o + iO)@-(k'p + iO) 

and (4b.14) 

Z,(k, E) = $1 {D'-'(k - k', E f EL.) T D'+)(k - k', E f Ek,)} 
k' 

We now explicitely see the generalizations obtained with respect to 
the BCS-theory. If we suppress the renormalization of the single electron 
energies ck, i.e. put Z, = O  and replace the phonon Green's function 
D'-'(k - k', E f gk,) in (4b.14) by an effective coupling constant Vkk,, 

Eqs. (4b. 12-15) reduce to the BCS-theory : 

E)+Ak = 1 Vkkff (k') 
k' 

G(k, E)+ - (271)- ' E + Ek 

E' -(E: +A:) 

F+(k,  E)+ -(271)' A k 
E2 - (E: + A:) 
+ m 

A,=  - ( 2 ~ ) - '  1 Vkk, 5 2(1+ e-Po)-'do Im A k ,  

k' - m ( o  + i0)' - (E:, + A:,) ' 

The selfconsistency equations (4b.14) and (4b.15) which correspond to 
the BCS gap equation are the same as those found in 1411 except for the 
fact that the more general and more realistic Hamiltonian considered 
there entails some additional terms to appear in the selfconsistency 
equations. 

5. Superradiance 

5a) Introductory Remarks 

As has been known since the beginnings of quantum theory, spontaneous 
emission of light is a quantum effect unexplicable in terms of classical 
physics. Nonetheless, the classical picture of emitters radiating in phase 
with each other can, under certain conditions, be used to understand 
the properties of light pulses spontaneously generated by a system of 
many excited atoms. If, for instance, Nidentical free atoms are prepared, 
at some instant of time, in an excited state of energy Ao and if these 
atoms occupy a volume with linear dimensions 1 @ A  = 271c/o, then 
spontaneous emission generates a light pulse with mean intensity 
proportional to N'. By energy conservation the spectral width of such a 
pulse is larger by a factor of the order N than the natural linewidth 
observed for independently radiating atoms. This effect was first discussed 
and termed superradiance by Dicke [47]. Dicke's 1954 paper has posed 
and left open a number of questions only recently answered by several 
authors [48-601. One of these open questions was whether super- 
radiance would ever be observable since the condition 1 @ A precludes 
getting a sizable number of atoms involved. We will show here that 
superradiance can be produced under much weaker and in fact realizable 
conditions [53]. In order to get a quick survey over the physics of the 
problem we will first present a semiclassical discussion before entering 
the fully quantum-mechanical treatment. 
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5b) Semiclassical Theory 

The propagation of a light pulse with carrier frequency w through a 
medium of identical two-level atoms with transition frequency w is 
semiclassically described by Maxwell's equations for the electric field 
E(x, t) and quantum-mechanical equations of motion for the spatial 
densities of the atomic variables polarization P(x, t) and inversion 
D(x, t). 

Our interest is in the special case with respect to the duration z of the 
pulse 
w - ' ~ z ~ T ~ , T Z ,  

where TI and Tz are the relaxation times of inversion and polarization, 
respectively. The left hand condition ensures that a carrier frequency 
of the pulse can be defined. We have to pose the right hand condition, 
since a superradiant pulse can be generated by in-phase cooperation 
of all atoms only and since phase correlations between the atoms cannot 
persist for times larger than the relaxation times TI and Tz. In the special 
case (5b.l) we may use slowly varying field variables 

with ! 

i {i;::} {b, bt, S+,  S-, S'} 4 {;d {b, bt, S+,  S-, S'i 

There we have assumed the pulse to move into the positive x-direction 
and that all quantities depend on one spatial variable x only. This 
assumption will be justified later. Moreover, for simplicity we assume 
linear polarization as indicated by the unit vector e. p is the component 
of the atomic dipole moment in the direction e. The normalization of the 
dimensionless variables b, bt, and S" has been fixed in anticipation of the 
quantum-mechanical meaning these quantities we will take on in the 
next subsection. Since the volume V contains N atoms we have IS[, 
IS* ( 5 N/2. The wellknown equations of motion mentioned above now 
read [61-631 
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with the coupling constant 

g = p 1 / z q i F .  

For the sake of generality we have accounted for losses of the electro- 
magnetic field measured by the field damping constant K. We may solve 
Eq. (5b.4) in terms of the ansatz 

S-(x, t) = S+(x, t) = $N sin@(x, t) 

S(x ,  t) = N cos @(x, t) 

bt(x, t) = - b(x, t) = (i/2g) a @ ( ~ ,  t)/at. 

The quantity @(x, t) is usually called Bloch angle. It characterizes the 
state of the N d V/V atoms in a volume element d V at the point x and at 
time t. It obeys the equation [64] 

a a + K - @(x, t) = NgZ sin @(x, t) ( T + C ~  at a 1 
The coeficient ~ g '  appearing here can be expressed in terms of 
measurable quantities as 

NgZ = c Z / l ~  , 1, = 1/-, Q = N/V, y = (87t2/3) (p2/hA3), (5b.8) 

where y is the natural linewidth of the atomic transition. The material 
constant 1, is called cooperation length [64]. Its physical meaning is 
obvious from Eq. (5b.7). It gives the scale of length on which @(x, t) 
changes spatially due to the atom-field interaction. In order to describe 
the superradiant behavior of the atomic medium we have to solve 
Eq. (5 b.7) with a suitable boundary condition at the end faces x = 0, x = 1 
and with an appropriate initial condition @(x, 0) = @,(x). The simplest 
initial condition is 

Let us quickly ascertain under which conditions such an initial state 
can be prepared experimentally. The common preparation technique 
consists in first bringing all atoms to the ground state and then sending 
a laser pulse along the axis of the sample. The (constant) amplitude b, and 
the duration T of this pump pulse are chosen such that T 4 l/c and 
@, = 129 b, TI. The propagation of this pulse through the sample can be 
described by Eq. (5b.7) with, in general, K = 0. At time t = l/c after the 
penetration of the pulse the sample is left in a state characterized by the 
Bloch angle @,(x). This can be independent of x only if 
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since the spatial variation of @,(x) is on a scale lc5. We require (5b.10) 
and now use Eq. (5b.7) and the initial condition (5b.9) to study super- 
radiant pulses. We specify the damping constant K as 

K = c/l. (5 b. 1 1) 

This damping is meant to simulate the "losses" of field energy due to 
the escape of light through the end faces of the sample. Note that l/c is 
just the time of flight of a photon through the sample [53]. This schematic 
way of dealing with leakage effects, which we have taken over from laser 
theory [61], saves us from having to account for complicated boundary 
conditions at x = 0 and x = 1. By using (5b.11) we may state the limit 
(5b.10) in the alternative form 

g W/K = 1/lC g 1 . (5 b.12) 

In this limit the Bloch angle @(x, t) can be determined quite easily. To 
obtain it we rewrite Eq. (5b.7) in terms of dimensionless variables 

To lowest order in 12/1: the Bloch angle @ can thus be obtained from 
i 

and will not depend on the spatial variable x. This approximate equation 
for @ corresponds to an adiabatic elimination of the electric field b from 
(5b.6) by 

We recognize Eq. (5b.15) as the equation of motion for an overdamped 
pendulum. Its solution reads 

@(t) @o tanh - = et'' tanh - 
2 2 

This implies the following result for the radiated intensity 

Let us remark that a spatially homogeneous complete inversion of the atomic 
population (@, = 0) can in principle be realized without any restriction on the length 1 of 
the sample, if an incoherent transverse excitation mechanism is used. 

Statistical Treatment of Open Systems by Generalized Master Equations 133 

with I, = 2 g 2 / ~  and 

The maximum intensity, reached at time t = tmax, is proportional to N2 
as is characteristic for a superradiant pulse. If all atoms are excited 
initially, i.e. @, = 0 or S(0)  = + Nf2, then the semiclassical theory 
presented here gives the nonsensical result tmax= a. The pendulum 
described by Eq. (5b.15) has an unstable equilibrium position at @ = 0. 
The semiclassical treatment can be valid only if the atoms display a 
non-zero initial polarization S' (0) = [ ~ ~ / 4  - S(0)2] 'I2. The quantum 
mechanical theory to be given in the next subsection will not have this 
drawback and will reveal the precise limit of validity of the semiclassical 
theory with respect to the initial Bloch angle @,. In order to find the 
physical meaning of the expressions I, = 2g2/rc and z = K / ~ ' N  and to 
justify our considering one spatial variable x only we specify the shape 
of the active volume as that of a long thin cylinder with length 1 and 
diameter d such that 

For this case it is intuitively clear and may be shown by a more detailed 
analysis [48,52] that only that part of the radiation which goes into the 
small diffraction solid angle 

A O = A ~ / ~ ~  6 1 (5b.21) 

around the axis of the cylinder is enhanced by cooperative effects. Up to 
corrections of order 1/N the whole initial atomic excitation energy is 
radiated into the superradiant pulse travelling along the axis of the 
sample. We then have 

The linewidth l/z of the superradiant pulse is thus seen to be the natural 
linewidth y of the atomic transition enhanced by the factor Nand reduced 
by the geometry factor AR/4z. Correspondingly, hol, is the fraction 
of the intensity of a single-atom emission going into the diffraction 
solid angle A0. 

Let us conclude by assembling the conditions for superradiance to 
occur 
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labs is the wellknown absorption length occurring in Beer's law. The 
difference to the case considered by Dicke [47l is obvious. Here the 
linear dimensions of the active volume have to be large compared to the 
wavelength A associated with the atomic transition. The requirement 
labs -4 I, following from (5b.l), ensures the atomic decay to be dominated 
by cooperative effects rather than by incoherent relaxation. The condi- 
tion 1-4 I, guarantees the pulse to be quasimonochromatic, i.e. propaga- 
tion effects within the sample to be negligible. Let us note that the pulse 
duration z cannot be made arbitrarily short by indefinitly increasing the 
number of atoms N. We rather have 

5c) Superradiance Master Equation 

We consider the system specified by the conditions (5b.22). The complex 
amplitudes b and bt of the quasimonochromatic light field and the 
atomic variables Sa are now operators obeying the commutation rules 

[b, b'] = 1 , [b, b] = [bt, bt] = 0 

[S" S*] = f S' , [Sf, s-] = 2SZ. 

The dynamics of the system is described by the equation of motion for 
the density operator W(t) of the radiating atoms and the light field 

The three reversible parts of the Liouvillian L denote commutators with 
the Hamiltonians 

HA = h o p  

H F = h o b t b  (5 c.3) 

where g is the coupling constant given in (5b.5). The irreversible part A, 
of the Liouvillian represents a field damping accounting for leakage of 
photons through the end faces of the active volume. It acts on some 
operator X as 

A,-x = K {[b, X bt] + [b X, b']) . (5c.4) 

We recognize A, as the damping Liouvillian for a damped harmonic 
oscillator moving under the influence of a zero temperature reservoir6. . 
For later use we note that (5c.4) implies 

t r b t l b l ' e A ~ l ~ = e - ( l + l ' ) ~ t  trb'lblZx. (5 c.5) 

Compare (3b.7) and (3b.9). 
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This is easily proved by differentiating with respect to time and using 
the commutation rules (5c.l). In the interaction picture Eq. (5c.2) simpli- 
fies, because of the atoms being in resonance with the field mode, to 

@(t) = - i(LAF + iA,) @(t) . (5c.6) 

We will in the following exclusively work in the interaction picture and 
may thus drop the tilde, w + W. The atom-field interaction and the field 
damping are characterized, as in the semiclassical theory, by the time 
scales l / g m  and l / ~  respectively. The order-of-magnitude relation 
(5b.12) may be written as 

g - 1 
O ( L A F ) = ~ P ,  O(A,)=K, o(L~,)/o(A~)=------<l. K 1, (5c.7) 

The ordel-of-magnitude estimate for the field damping Liouvillian, 
O(A,) = K, can be read off the definition (5c.5). On the other hand, the 
estimate O(LA,) = gfl cannot be gained from just looking at HA,; it is 
intuitive, though, in view of the semiclassical treatment in the foregoing 
subsection and can, moreover, be obtained by an analysis of the eigen- 
value spectrum of HA, [65,66]. Scharf [65] has found that for N & 1 the 
eigenvalues of HA, are nearly equidistant and separated by - h g P .  
As a consequence, expectation values of observables of the system will 
in general display a quasiperiodicity with quasiperiod gfl, if the state 
of the system is a superposition or mixture of many eigenstates of HAP 
The order-of-magnitude relation (5c.7) implies, as in the semiclassical 
theory that the field will follow the motion of the atoms adiabatically. 

Since we are interested in a spontaneous emission effect we want to 
solve Eq. (5c.6) with the initial condition 

where 10) is the photon vacuum, b10) = 0, and ~ ( 0 )  the initial value of 
the atomic density operator 

We think of the atomic initial state as being prepared by the method 
discussed in the preceding subsection, that is by means of an intense short 
laser pulse. If this pump pulse has a random phase and a f ied  stable 
amplitude, it generates an atomic state which has been shown by Boni- 
facio, Haake, and Schwendimann [54] to be well approximated by 

with 
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The "angular momentum" quantum number m is related to the Bloch 
angle @ by m = 3 N cos@ where 3 N cos@ has to be rounded to the next- 
lying integer. 

In view of (5c.7) it is advantageous to adiabatically eliminate the field 
coordinates from Eq. (5c.6) and to study the Nakajima-Zwanzig equation 
for the atomic density operator ~ ( t ) .  To this end we define the projector 

Here we have chosen the initially present photon vacuum as the reference 
state for the field. Because of 

'$3LAF'$3=0, AF(0) (Ol=O, ( 1 - p )  W(O)=O, pA,=O (5c.12) 

the Nakajima-Zwanzig equation here reads 

i ( t )=  - jdtf t rFLAF e - i [ i A ~ + ( '  -I]P)LAF]~' L 
A F  10) (01 ~ ( t  - t'). (5c.13) 

0 

Up to corrections of higher order in I/l, we can approximate the integral 
kernel in (5c.13) in lowest order in LA,. By using (5c.5) we thus obtain 

with the collective decay Liouvillian 

The order of magnitude of A, can be found as 

This is just the inverse' pulse duration known from the semiclassical 
treatment of the preceding subsection. Since we have K B  l/z we can 
neglect retardation effects in (5c.14) and so finally get the quantum 
mechanical analog of the semiclassical equatiofi (5b.15) for the Bloch 
angle 

Before proceeding to solve this superradiance master equation 
[53,54] let us first construct the analog of Eq. (5b.16) in order to see . 
explicitly how the field follows the motion of the atoms adiabatically. 
To this end we have to evaluate the expectation values (bt(t)' b(t)") 
which for I, 1' = 0, 1,2, . . . specify the statistical properties of the radiation 
field. 
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We use (2b. 12) and obtain 

(bt(t)' b(t)") = tr, tr, bt' bi'{'$3 W(t) + (1 - '$3) W(t)} 

Here we have immediately expanded the exponential 
exp[A, - i(1- '$3) LA,] t in terms of LA, and used the abbreviations 
U(t) = exp A, t and Q = 1 - '$3. Because of O(U(t)) = exp( - ~ t )  and 
O(LAF) = g F N  the above expansion goes in terms of the small parameter 
~ V / K  and may thus be truncated after the first nontrivial term. The first 
nonvanishing term in the series arises for n + 1 = I + 1'. This can be seen 
as follows. Let us disregard, for the moment being, the factors UQ which 
are irrelevant for the argument. By using the cyclic invariance of the 
trace we let all n + 1 factors LA, in the n-th term of the series act to the 
left. When bt'b" is thus (n + 1) times commuted with HA, a polynomial 
in b+ and b is obtained. All monomials bti& in this polynomial are 
characterized by (i + j) >= (I + 1') - (n + 1) because of the commutation 
relations [b, f (b, bt)] = 8 f (b, bt)/abt. Now for (n + 1) <(I + It), i.e. 
(i + j) > 0, we have tr, bti 1Fi 10) (01 = 0. We thus see that the term of order 
n + 1 = 1 + I' is the first to produce a contribution bti 1Fi with i = j  = 0 whose 
vacuum expectation value does not vanish. By the same reasoning we 
find that in the term of order n + 1 =1+  I' we can replace the factors 
Q = (1 - '$3) with unity. The field expectation values (b+(t)' b(t)") are 
now expressed as 

To evaluate this further we proceed step by step as follows. The first 
damping propagator, U(t' -s,+,. - ,) is replaced with exp[- ~(t ' -s ,+, .  - ,)I 
because of (5c.5). The following commutator is made to act to the left as 
[b+'bi', HA,] = g{- IS+ b+'-'b" + 1's- b+'b"-'1.   hen the next damp- 
ing propagator, U(s, +,, -, - s ~ + ~ ,  - ,) gives way to exp [- K(s,+,, -, 
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-s,+,. - ,)I. Going on in this way we obtain 

(b+(t)' b(t)") 

The (1 + 1' - 1)-fold integral over the si is elementary and leads to 

For times large compared to the photon transient time, t b K-', retarda- 
tion effects can be neglected so that we finally get 

This is the quantum mechanical version of (5b.16). Field expectation 
values can thus be evaluated as soon as the superradiance master 
equation (5c.17) for the atomic density operator is solved. 

5d) Solution of the Superradiance ~ a s t l r  Equation 

a) Quasiprobability Distribution P(s, s, s, t) 

The simplest and physically most transparent method of solving the 
master equation (5c.17) for the atomic density operator consists in first 
transforming this equat i~n  into a partial differential equation for the 
following quasiprobability distribution function [56,58]. 

+ 00 + c O  + m  

P(s, s*, sZ, t) = J J J (d25/n) (dv/2n) 
R e < = - m  I m < = - c o  q = - c o  

t r A e - i < * ( s * - S + ) e - i d s z - S z ) e - i < ( s -  S-)  (5d. 1) 
@(t) . 

This definition associates the c-number variables s, s*, s' with the 
operators S-, S+,  S such that expectation values of operators are given 
by moments of the quasiprobability distribution function P as 
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P(s, s*, sz, t) is real but not necessarily positive. For a discussion of the 
mathematical properties of quasiprobability distributions we refer to 
[9- 143. 

A similar quasiprobability can be defined for the radiation field 
+ m + m 

P~(fl,  B*, t) = J J (d25In) trFe-i<*tP'-b') e ' - '  'r(s-b)@F(t), (5d.3) 
R e < = - m  I m < = - m  

where eF(t) is the density operator for the field. Here c-number variables 
are associated with operators such that 

(bt(t)' b(t)") = J dZflfl*'fl"PF(fl, fl*, t) . (5d.4) 

PF(fl, fl*, t) is the weight function in the diagonal representation of eF(t) 
with respect to coherent states introduced by Glauber [ll] which we 
have already used in Section 3. In the present case PF(fl, fl*, t) is related 
to the quasiprobability distribution function P(s, s*, sz, t) for the atomic 
variables by 

This follows from the adiabatic correspondence law (5c.22). 

fl) Equation of Motion for P(s, s*, sz, t) 

In view of a theorem proved by Haken [15] it must be possible to convert 
the superradiance master equation (5c.17) to a differential equation of 
motion for the quasiprobability P(s, s*, sz, t) because the set of operators 
S+,  S-, Sz is closed with respect to commutations. To construct this 
equation we differentiate (5d.l) with respect to time and insert i= A,@. 
Then we use the identities 

e i q S z ~ +  = S+ e i ~ z e i ~  
3 

which follow from the commutation relations (5c.l) and the following 
differential relations 
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We may estimate the relative weight of the various terms in (5d.8) by 
referring the variables t, s, s*, s' to their respective scales 

t + t h  . r = ~ / g ' ~ = 2 / 1 ~ N  
(5 d.9) 

sa +sa/(3 N) because of I (S") I 5 N/2 . 
In this way we see that j-th order derivatives in (5d.8) have the weight 
(2/WJ-'. Up to corrections of order 1/N < 1 the quasi-probability 
P(s, s*, sz, t) therefore obeys the first order differential equation 

a 
P(s, s*. sZ, t) = Il - -- 

a { as* 
s*sZ - - ssZ + -SS* P(s, s*, sZ, t) . (5d.10) as asz a 1 

This equation allows for solutions depending on sz and the product ss* 
only. As we will see below the initial quasiprobabilities relevant for 
us obey 
P(s, s*, sZ, t = 0) = P(ss*, sZ, t = 0) . (5d. 1 1) 

We can therefore determine the time-dependent quasiprobability from 

y) Solution of the Initial Value Problem 

The first-order differential equation (5d.12) can be solved using the 
method of characteristics. The associated characteristic curves are 
defined by the following set of ordinary differential equations 

dss* -- 
d t 

- 211 szss* 

The first two of these equations have a very intuitive physical meaning. 
They are the trajectories of the classical variables S-(t) S+(t) and S ( t )  
used in subsection (5b) as may be shown by using the ansatz / 

ss* = $N' sin2@ and sz = +N cos@ and comparing with (5b.15). The 
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classical trajectories (5b.17) may be written as 

so$ sech2(Il t l/(s',)' + soso+ 
ss* = ss*(sos,*, s',, t) = 

[I -s;[(s',)' +sOs,*] - l i2  tanh(~,tl/Ts',)~ +s,s,*)]~ ' 

In the following we will also need the inversions of Eqs. (5d.14) expressing 
the initial coordinates s', and so$ in terms of the current values at time t 

s0sg = s0s,*(ss*, sZ, t) = 
ss* sech2(Il tv- 

[I  + s'[(sz)% SS*]-"~ tanh(Il tv- ' 

From the third of Eqs. (5d.13) we find the quasiprobability 

We thus see that the quasiprobability drifts through the phase space of 
its independent variables along the classical trajectories. The shape of P 
does not change in time save for the occurrence of the kinematical factor 
sos,*/ss*. The latter shows how the differential phase space volume 
element changes along the trajectories. Its presence guarantees that P 
remains normalized to unity at all times if it was so normalized initially. 
The precise statement is 

sos,*(ss*, sz, t) 
ds',dsos,* = dsZ dss* . 

ss* 

It may be verified by evaluating the functional determinant for the 
transformation of variables s',, so s,* +sz, ss* given in (5d. 15). 

Let us now use the result (5d.16) to find the expectation values 
(~+( t ) 'S( t )4  ~ ~ ( t ) " ) .  With the help of the general expression (5d.2) 
we get 

(S +(t)' S=(t)k s-(t)") 
53 + m sos,*(ss*,sZ,t) 

=dl,. 1 dss* 1 dsz(s')4(ss*)' ss* P(sos,*(ss*,sZ,t),s',(ss*,s',t), 0) 
0 - m 
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In the second line we have transformed the integration variables accord- 
ing to (5d.14) and used (5d.17). The expression obtained allows the 
following intuitive interpretation. Either the time-independent "random" 
variables (szr (ss*)' are averaged with the time-dependent quasiprobabi- 
lity distribution as a statistical weight or the time-dependent random 
variables (sz(t)r (ss*(t))' are averaged with the initial quasiprobability as 
statistical weight. The explicit evaluation of (5d.18) requires the specifica- 
tion of the initial quasiprobability distribution. 

6) Initial Quasiprobabilities 

For our initial state (5c.10) we have 

(3 N, m IS+'Szk S-"1 $ N, m> 

(*N+m)!(iN-m+l)! 
(m-Qk for l S $ N + m  

($N-m)!(iN+m-I)! (5d.19) 
( 0  for l > $ ~ + r n .  

By expanding the exponential functions in the definition (5d.l) of the 
quasiprobability we get the initial quasiprobability as 

U 
b(sZ+1-m)-~(ss*). 

ds s*' 

The expressions (5d.19) and (5d.20) simplify considerably in the limit 
N 9  1, since the ratios of factorials may be approximated by 

(z+a)!/z!xz" for z 9 a .  (5d.21) 

The resulting asymptotic expressions look somewhat different for strong 
(3 N - m G 3 N),  medium (lmlG N/2), and weak (i N + m -g $ N) initial 
atomic excitation. In the case of strong excitation (5d.20) becomes 

(v+I)!  a1 
P(SS*,S' ,O)=~(S~-$N +v)  I(- l)'(N - v ) ' ~ - ~ ( s s * )  

I v .  ass*' 
(5d.22) 

= 6(sZ - $N + v)(l/v!)[ss*/(N - v)lV(N - v)-' exp[-ss*/(N - v)] 

for Osv-$N-m+$N.  
Since P(ss*, sz, 0) factors with respect to the dependence on ss* 

and sz we may say that the "random variables" ss* and s' are statistically 
uncorrelated in this strong-excitation initial state. Let US note that v need 
not be a small number of order unity for the asymptotic expression 

(5d.22) to be valid. If N is say 1012 and if we are willing to accept an 
accuracy of 1 % for the moments (S"S-'> with 0 S 1s lo8 then we may 
use Eq. (5d.22) for v up to -- 10". For v that large P(ss*, sz. 0) develops 
an extremely sharp maximum at ss* = v(N - v) =$N2 -m2. Up to 
corrections of order v/N (that is, in the above example, 1 %) for the 
moments we can then replace (5d.22) with 

P(ss* ,Y,O)=6(sZ-m)6(ss*-dN2+m2)for  l G v = $ N - ~ G $ N .  (5d.23) 

For medium initial excitation (5d.20) simplifies to 

a1 
( -  I)' (f N2 - m2)'6(i + 1 - m) - P(ss*, sz, 0) = IT 

dss*' ~ ( s s * )  (5d.24) 1 

for Iml G N/2. 
This expression remains valid for Iml up to -- 10" in the above 

numerical example. If Iml is large compared to unity this formula simpli- 
fies further according to 6(s' + 1 - m) -+ 6(sz - m) and then coincides with 
(5d.23). We thus see that the asymptotic expressions for strong and 
medium initial excitation (5d.22) and (5d.24), respectively, have overlapp- 
ing ranges of validity. Let us remark that P(ss*, sz, 0) according to (5d.24) 
does not factor in separate distribution functions for its independent 
variables. These latter are thus "statisti8cally correlated random variables" 
for medium excitation. It is also interesting that this P(ss*,sz,O) is 
sharply peaked near ss* = f N2 - m2 in the following sense 

( -  1)' a' = C -- ( ~ N Z  - rn2)'--- ~ ( s s * )  ' I! ass*' 

for Iml G N/2. 
A similar formula for P in the case of weak initial excitation is also 

readily written down but is of no interest for our discussion of super- 
radiance. 

E )  Explicit Results 

We are now equipped with the initial quasiprobabilities and can therefore 
explicitly evaluate the integrals (Sd.18). We will write down the field 
expectation values (bt(t)' b(t)') which can be measured in photon 
counting experiments [67]. By using the adiabatic correspondence 
(5c.22) and Eq. (5d.18) we find the theoretical predictions for (bt(t)'b(t)'). 
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In the case of medium initial excitation we use (5d.24) and get 

where we have to insert the classical trajectory (5d.14). The integral 
occurring here collects its only important contributions near 
so$ x N2/4-m2. For such values of so$ the j-dependence of 
ss*(sos,*, m-j, t) is negligible to within corrections of order 1/N. We 
then get with the help of (5d.25) 

(b+(t)' b(t)') = 1p(2 ' [~~*( iN2  - m2, m, t)]' 

= [lp12iN2 sech2 [(t - t,,J/z] 
= (b?(t) b(t))' 

with t,,, = i z  In [(i N + m)/(i N - m)] for Iml Q N/2. 
This is precisely the result (5b.18) of the semiclassical theory. We get 

the same result for strong initial excitations, as is clear from (5d.23), 
as long as 1Qv=N/2-mQN/2. 

Deviations from the completely classical behavior of superradiant 
pulses, i.e., noticeable quantum fluctuations can only be expected for 
very strong initial excitations, i.e. j v = 3 N - m = O(1). By replacing 
N - v by N in (5d.22) we get for this 'case 

w 

(bt(t)' b(t)') = 1pI2' d s o ~ , * ( l / ~ ! ) ( ~ o ~ , * / N ) V  N-I e-m0"6'N 

Since the important contributions to this integral arise from the interval 
0 5 sos,* 5 v N where sos,* Q N2/4 we may replace N2/4 + sos,* by N2/4 
in the arguments of the hyperbolic functions, again accepting an error 
of order 1/N. By finally expressing the hyperbolic functions in terms of 
exponentials we obtain 

For large v this again reduces to the classical result (5d.27). We expect 
the deviations of (5d.29) from the classical result (5d.27) to be most 
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pronounced for v = 0, since for this case of complete excitation of all 
atoms the distribution function for the variable sos,* is broadest. This 
special case has also been investigated by Degiorgio [55]. The present 
expression (5d.29) is valid for v ranging from zero up to values where the 
system behaves fully classically. In order to evaluate the magnitude of the 
quantum fluctuations displayed by the superradiant pulse for initial 
states with v = 0,1,2,3, . . . we first rescale the variables by writing 
Z = N ~ - " ~ ' ,  sOs,*=N(y-z) 

This shows that the number of atoms N enters as a scaling parameter 
only, once N is large. We compare the results of a numerical evaluation 
of (5d.30) with the semiclassical results (5b.18) in Fig. 1-3. Figure 1 
presents a plot of the "time" z, at which the pulse intensity goes through 
its maximum versus the initial-excitation parameter v =$N -m. The 
largest deviation from the semiclassical value z:'' = v/(l - v/N) x v 
appears for v = 0, i.e. full initial excitation of all atoms. For v increasing 
the relative deviation (z, - zk'))/zf') approaches zero as 1/2v. In Fig. 2 
we show the relative deviation of the quantum-mechanically calculated 
maximum intensity ( I  = 1, z = z,) from the classical maximum intensity 
l ~ l  N2/4 
AI(v) = 1 - (bt(t) b(t))/(;N)' . (5d.31) 
The maximum intensity is found smaller than what the classical treatment 
predicts. The relative deviation is 22% for v = 0 and approaches 4/(v + 1) 

Fig. 1 Fig. 2 

Fig. 1. Times of maximum intensity, normalized as z = Ne-2'/r, for atomic initial states 
(+N, f N - v). The dashed line gives the classical result 2:'' = v/(l - v/N) z v according 
to (5b.19). 

Fig. 2. Relative deviation of the maximum intensity from its classical value for atomic 
initial states J iN ,  f N - v). For v > 8 the curve approaches l/(v + 1) 



Fig. 3. Quadratic fluctuation of the intensity for atomic initial states I iN ,  f N - v). 
evaluated for the times z ,  of maximum intensity. For v > 10 the curve approaches 1 / 9 v 2  

for v  increasing. Finally, in Fig. 3 we gjve the quadratic fluctuation of the 
intensity evaluated for the time zv of haximum intensity 

For v  = 0  we have o(0)  z 0.09. The pulse displays large quantum fluctua- 
tions. These fluctuations rapidly decrease with v  increasing, o(v)  ap- 
proaching 1/9v2. 

As a conclusion we may thus say that superradiant pulses behave 
practically classicalIy for nearly all atomic initial states I+N, m )  if the 
number of atoms N  is large. An exception is made by the most highly 
excited initial states with v  = + N  - m  = O(1) only, for which the pulses 
display large quantum fluctuations. For N  +O the domain 0  S v 5 O(1)  
of these exceptional initial states becomes asymptotically small in 
relative terms, 0 ( 1 ) / N  + 0.  The exceptional behavior of the most highly 
excited atomic initial states is easily understood qualitatively. For these , 

states the pulses are triggered by elementary spontaneous-emission acts 
which are uncorrelated with each other and may be considered quantum 
noise. The pulses thus generated can be understood as amplified noise. 
On the other hand. for initial states with v  large, the atoms initially 
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produce a nonzero transverse component of the Bloch vector, 
[ ( S f ( 0 )  S- (0) ) ] ' '2  = [ ( v  + 1 )  ( N  - v)]  l i 2  9 1 .  Since the transverse com- 
ponent of the Bloch vector measures the electric polarization of the 
atomic medium, the pulses are in these cases triggered by a large 
"classical" source rather than by noise and thus should behave nearly 
classically as in fact they do. 

6. The Laser 

6a) Introductory Remarks 

As is well known, in a laser stimulated emission of light by excited atoms 
is used to generate selfsustained oscillations of the electromagnetic field. 
To achieve this the active atoms have to be pumped continuously to 
suitable excited states and the radiated field has to be fed back into the 
atoms by means of mirrors. Laser theory has to account for the atom- 
field interaction as well as the irreversible pump mechanism and field 
losses by diffraction and leakage through the non-ideal mirrors. Several 
formal techniques have been successfully employed to treat the dynamics 
of a laser. Among these are Langevin equation methods, generalized 
Fokker Planck equations, master equations, and Green's functions. For 
an exhaustive presentation of the various equivalent laser theories we 
refer to [ 6 1 ]  Here we briefly discuss a master equation treatment. For 
the sake of simplicity we consider the simplest model of a laser consisting 
of N  identical two-level atoms in resonance with a single mode of the 
electromagnetic field in the cavity. The atom-field density operator 
W(t) obeys an equation of motion reading, in the interaction picture, 

The three parts of the Liouvillian refer to the atom-field interaction 
(LA,), the pump and atomic losses (AA)  and field losses (AF).  They have 
all been used in the preceding sections of this paper in other contexts. 

L A F X = h - ' [ H A , .  X I ,  H A F = R g ( b S f  + b t S - )  
N 

= Rg 1 (bs:  + b t s ; )  
v =  1 

A F X = ~ { [ b ,  X b t ]  + [ b X ,  b t ] }  (6a.2) 
N 

AA = 1 Av 
v =  1 

A , X = f r 1 o { [ s , ,  X s , f l +  Cs, x, sill 
 YO^ { [ s , f ,  X s , ]  + [s,f x, s,l} 
-31 {[s:, X5;1 + [.$XI s:l) . 
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HAF is the interaction Hamiltonian already used in our treatment of 
superradiance. AF is the Liouvillian for a damped harmonic oscillator 
derived in Section 3. It describes how the field mode in the cavity would 
dissipate any initial energy were it not coupled to the active atoms. Note 
that we have dropped the term proportional toii = (ePhu - I)-' occurring 
in (3b.7). This is possible since for frequencies in the optical region and for 
temperatures at which lasers are usually operated we have ii 4 1. Finally, 
A, is the atomic pump and loss Liouvillian (3c.1). According to (3c.3) the 
transition rates ylo, yo,, and q are related to the polarization and inversion 
damping constants y, and yll, respectively and the unsaturated inversion 
oO as 

T-1 = -' 
2 1-2(~01 + Y ~ O + V )  

T;'=Yll=Yol+Y~o (6a.3) 

f l o = ( ~ o l - ~ l o ) l ( ~ o l + ~ l o ) ~  - l S o o S + l .  

The Bose commutation relations for the field operators b and bt and 
the spin commutation relations for the atomic operators s: (polarization) 
and s; (inversion) are listed in (5e.l). 

As discussed in Section 5c the Liouvillians LA, and AF impose on 
observables of the system the time rates of change g p  and ti, respec- 
tively. By the definition of AA in the form 

tr, eAAt X = tr, X 

tr,s: eAAtX= e-~"tr,X b (6a.4) 

tr,$,e"~'X= e -~ l l ' t r , $ ,~  + (1 - e-~ll') $crotrAx 

we see that A, introduces time rates of change of the order y, and yll. 
We thus have the important order-of-magnitude estimates 

O(A*) = Y,, YII 
O(AF) = ti (6a.5) 

O(L,,)=gfl.  

Let us note that in our discussion of superradiance in Section 5c we have 
solved Eq. (6a.l) in the limit O(A,) 6 O(LAF) 6 O(AF). Here, however, 
the light field is trapped in a near-ideal cavity so that we have O(AF) 
4 O(A,), O(LAF). Moreover, for a typical gas laser Arecchi et al. [68] 
give y, z yll  and gfl/yl z 0.1. We thus have to solve Eq. (6a.l) in the 
limit 

t i 4 9 m < ~ ~ , ~ ~ ~ .  (6a.6) 

This suggests to first try to eliminate the atomic variables from (6a.l) 
and to consider a Nakajima-Zwanzig equation for the reduced density 
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operator e(t) of the field mode. Because O(LAF)/O(AA) z 0.1 is smaller 
than unity but not very small we cannot, in general, hope a low-order 
approximation of the Nakajima-Zwanzig equation in terms of LA, 
to be possible. It will turn out, however, that for the laser operating near 
threshold such a low-order approximation is indeed valid. We will 
treat this simple case only. 

6b) Master Equation for the Field Density Operator 

In order to eliminate the atomic variables from (6a.l) we use the projector 

!)I = Atr, (6b. 1) 

and use as the reference state B,,, - A for the atoms the unsaturated 
atomic density operator 

N 

AAA=O, A =  ,= n 1 A,, A,=i(l  -a,)s;sl +*( l+oo)s ls , .  (6b.2) 

We will have to demonstrate later that this choice for the atomic reference 
state is a good one for a laser operating near threshold. We now consider 
the Nakajima-Zwanzig equation (2b.13) for 

e(t) = trA W(t )  , 
f 

e(t)= A,&)+ jdt 'K(tl)e(t-t ')+I(t).  
0 

Because of 

and since O(AF) 4 O(AA) the expansion (2b.18) for the Laplace- 
transformed integral kernel reads here 

m m 

K(z) = C K ( ~ " + ~ ) ( Z )  = 1 (-  1)"" tr, L,,[U(Z) (1 - !)I) L,,]~"+' A 
n = O  n = O  

with 
m 

U(Z)= j d t e - " e " ~ ' = ( z - A ~ ) - ~ .  (6b.6) 
0 

A similar expansion obtains for the inhomogeneity I(t). For the further 
evaluation of (6b.6) it is convenient to introduce the diagonal representa- 
tion of ~ ( t )  with respect to coherent states 
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which we have already used in Sections 3 and 5. (6b.4) then becomes an 
integrodifferential equation of motion for the quasiprobability P(B,B*, t). 
This equation has the same appearance as (6b.4) with Q - P P  and7 

Then the first two terms in the expansion (6b.6) read [70] 

a a a2  
K")(f) = ~ ( " ( t )  ( ~ g ~ / ~ ~ ) { - ( d p '  B* + - B) 00 + - 

8~ a p a p  +Go)} 

and (6b.9) 

Here we have approximated (N+ 1) by N. The time-dependence of 
K"'(t) and K(4'(t) is determined by the "retardation functions" 

(p(2)(t) = yl e - ? ~  

47Y'(t) = [Y:Y~~/(YI - Y ~ ~ ) ~ ]  [e-'llt - (1 + (yl - ~ i ~ )  t) e-'"] (6b.11) . 
(p(24'(t)=2yI[e-2yLt-{1 - y,t) ePYLt]. 

This can be shown by writing Eq. (6b.4) in antinormal order with respect to b  and by 
using [b.J(b.  b

y
) ]  = a J ( b ,  by ) /aby  and then substituting b-P,  by -P* ,  Q - P  [69] .  
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These functions are normalized so as to integrate up to unity, 
03 

f dtcp(t) = 1. We will come back to the higher order terms K(2n+2)(t) 
0 

below. The first order derivative terms in K(2)(t) describe a linear drift 
of the quasiprobability P(B, B*, t) towards higher amplitudes IBI, i.e. 
a linear gain for the field amplitude. The amplification coefficient is 

This amplification competes with the linear damping described by A,. 
The laser can begin to produce selfsustained oscillations once the linear 
gain outweighs the linear damping, 

This is the wellknown threshold condition [61]. The second-order- 
derivative term in K(2)(t) has a diffuse effect on the quasiprobability 
P(B, B*, t). That means physically, it describes noise. The diffusion 
constant is 

The first term in K(4)(t) represents a nonlinear damping force on the 
field amplitude. This is a saturation effect preventing the field amplitude 
from blowing up for a, > K and ensuring stable selfsustained oscillations 
above treshold. The nonlinear-drift coefficient is 

Let us now determine, by a selfconsistent argument, the equation of 
motion for P(B, B*, t) near threshold, i.e. for the case 

To this end we first assume, subject to later proof, that we can neglect 
all K(2n+2)(t) for n > 1, moreover all terms in K(4)(t) except the first, the 
inhomogeneity I(t) and retardation effects. Then Eq. (6b.4) simplifies to 

This is a Fokker Planck equation first found by means of semiclassical 
arguments and solved by Risken [70-721. In as much as it yields a valid 
description of the laser it proves the field mode to behave like a noise- 
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driven van der Pol oscillator [73]. Its stationary solution is easily 
verified to be 

with 

I = ~ B * B  

This stationary distribution function and its moments 

give an excellent quantitative account of photon counting experiments 
[74]. The time-dependent solution of the Fokker Planck equation has 
been given by Risken and Vollmer [71] and Hampstead and L& [72]. 
It allows the evaluation of multitime correlation functions of the field 
operators b and bt with the help of our general expression (2e.17). Such 
correlation functions have been measured in both interference-type 
and photon-counting experiments and again, excellent agreement 
between theory and experiments is foynd [75,76]. 

While it is gratifying that the simple Fokker Planck equation (6b.17) 
checks so well with experiments, the field mode thus behaving like a 
noise-driven van der Pol oscillator, this fact cannot be considered, from 
a theoretical point of view, a justification for the above-mentioned 
approximations leading from the general Nakajima-Zwanzig equation to 
(6b.17). The justification can, however, be given as follows. 

The stationary photon number at threshold (a, = a,,, a = 0) 
follows from (6b. 18) and (6b. 19) as 

The experimental result [74] is (bt b)la=, x lo4. For a laser operating 
near threshold, (a, - a,,,)/a,,, 6 1, and for small deviations from the 
stationary regime [(bt b)Ia=o]'12 is a good scale for the field variables 
B, B*. By introducing the normalized variables 

we see that all terms in the Fokker Planck differential operator A (6b.17) 
have the same weight, whereas all neglected terms in ~ ' ~ ' ( t )  are smaller 
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to at least first order in the parameters 4m or 4mgI/NIyp The 
higher order contributions K(2"22)(t) to the integral kernel turn out to 
be small in the same sense. 

We now have to demonstrate the validity of the Markov approxima- 
tion made above. That is we have to show that P(B, B*, t) relaxes to the 
stationary state (6b.18) much more slowly than the retardation functions 
(6b.11) decay to zero. The rate of relaxation of the quasiprobability is 
given by the eigenvalues of the Fokker Planck differential operator A. 
These have been determined by Risken and Vollmer [71] by solving 
the eigenvalue problem 

For all retardation effects to be negligible we have to require 

Ynm 6 71, YII  . (6b.23) 

By inspection of the results of [71] we find that this condition is fulfilled 
near threshold, i.e. for (a, - a,,,)/a,,,< 1. Since the inhomogeneity I(t) 
decays on the same time scale as the integral kernel we now also see 
that we can indeed neglect it. 

As a final check on the consistency of our arguments we should 
show that the choice (6b.2) for the atomic reference state is a good one. 
For this to be so A should be practically identical with the stationary 
atomic density operator gA = ~ , ( t +  m). By using (2b.12) gA can be 
evaluated in the same approximation (0(g4) and Markov) as the field 
density operator. It is thus easily shown that Q, has indeed the same 
structure as A, namely 

and that the deviation (a,-F)/a, is small near threshold, i.e. for 
( ~ 0  - ~lhr)/~thr < 

Let us conclude this section with a few qualitative remarks on the 
laser operated far away from threshold. To treat this case in the frame- 
work of the Nakajima-Zwanzig theory would require to retain terms of 
all orders in the expansion (6b.6) of the integral kernel. Far above 
threshold (a, B a,,,) the quasiprobability obeys a generalized Fokker 
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Planck equation [77] 

a a 2 + ---- 
aa* a a  Q(+ -)(a, a*, t') + -- Q(- -)(a, a*, t')] P(P, a*, t - 1.1 

a a2 

since derivatives of higher order than the second assume an ever smaller 
weight with the pump strength a, and thus the photon number (bt b) 
increasing. The drift and diffusion coefficients contain contributions of 
all orders in the coupling constant g. Far below threshold when only a 
few photons are present all saturation effects are negligible but deriva- 
tives of all orders with respect to the field variables have to be kept. We 
refrain from treating these cases here quantitatively, since they are more 
easily handled by other methods [78]. 

7. Dynamics of Critical Fluctuations in the Heisenberg 
Magnet 

i 

7a) Introductory Remarks 

It is known from experiments that the dynamical behavior of systems 
near critical points is characterized by extremely large scales for both 
the magnitude and the lifetimes of the fluctuations of certain observables. 
Among these socalled critical observables are always the long-wavelength 
Fourier components of the order parameter. 

For the Heisenberg magnet we have as a complete set of microscopic 
observables the wave-vector-dependant spin operators $ (cr = z, +, - ) 
which obey the commutation relations 

with N = number of spins in the lattice. 
The dynamics of these observables is governed by the Heisenberg 

Hamiltonian 
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J(q) is the exchange integral. For it we assume 

The critical fluctuations of these spin variables have been investigated 
recently by Resibois and de Leener [79], Resibois and Dewel [80], and 
Kawasaki [81] with the following results. Th_e decay time of the equi- 
librium correlation function r,(t)= (S:(t)St,(O)) diverges at the 
Curie point ( T  = Tc) for q -0 as 1q1-5'2 to within a possible correction 
q(q 6 1) to the exponent. The decay of T,(t) is non-Markovian, that is 
T,(t) displays damped oscillations. These results imply that at T = T,  the 
conventional theory of critical slowing down [82,83] is not valid. This 
latter theory would predict a spin diffusion according to 
c ( t )  = - q2 D Tq(t). For 0 < I(T - T,)/TcI 6 1, however, there is a spin 
diffusion regime for wavevectors smaller than the inverse correlation 
length, Iql 6 l/((T). There the decay of T,(t) is monotonic on a scale 
z 1q1-2. 

These results were obtained by Resibois et al. by an appropriately 
renormalized perturbation expansion of Tq(t). Kawasaki, on the other 
hand, proposed a more widely applicable theory. He put forward general 
kinetic equations which are nonlinear stochastic equations of motion 
(Langevin equations) for critical dynamical variables. These kinetic 
equations generalize the conventional linear damping equations by 
including couplings between the Fourier components of the critical 
variables. The validity of Kawasaki's approach is supported by the 
following facts. (i) The kinetic equations imply the correctness of the 
"dynamical scaling laws" [84] if the static equilibrium correlations of a 
system in question obey the "static scaling laws" [85,86]. There is a 
wealth of experimental evidence for these scaling laws which the Kawa- 
saki theory can thus claim as a back-up for itself, too. (ii) By accounting 
for couplings between the critical variables Kawasaki's equations 
incorporate the mode-mode-coupling theory of Kadanoff and Swift [87] 
which has proved successful in explaining critical fluctuations in liquid- 
gas systems. (iii) Similar nonlinear Langevin equations have been 
fruitfully employed in statistical treatments of turbulence [88,89]. 
(iv) For the case of the isotropic Heisenberg magnet the solutions of 
Kawasaki's equations reproduce the results of Resibois et al. 

From a theoretical point of view Kawasaki's theory appears to be a 
phenomenological one. In constructing it Kawasaki made a number of 
assumptions which are unproven although partly plausible and backed 
up by empirical evidence. Among these assumptions are the following. 
(i) The critical dynamical variables move slowly compared to all other 
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variables of the system. (ii) The quantum mechanical operators represent- 
ing the critical variables can be treated as c-numbers. (iii) Only quadratic 
nonlinearities occur in the kinetic equations. (iv) Certain higher order 
static correlation functions of the critical variables factor into products 
of low-order correlation functions. 

We here want to show that Kawasaki's kinetic equations can be deriv- 
ed from the Liouville-van Neumann equation w (t) = - (ilh) [H, w (t)] 
without recourse to the a-priori assumptions just mentioned. We will 
do that for the Heisenberg magnet. Other systems can be treated anal- 
ogously. Our procedure [90] will be based on associating c-number 
variables with the spin operators $ in the sense of Section 2d and 
writing the Liouville-van Neumann equation as a differential equation 
of motion for a suitably defined quasiprobability distribution function. 
We then separate the set of wave-vector-dependant spin variables in 
long-wavelength and short-wavelength variables and show that only 
the former undergo critical slowing down. The Nakajima-Zwanzig 
equation for the reduced quasiprobability distribution over the low - JqJ 
variables is found to be a Fokker Planck equation stochastically equiv- 
alent to Kawasaki's Langevin equations. 

7b) Master Equation for the Critical Dynamical Variables 

a) Quasiprobability Distribution F u ~ t i o n  

We first define a quasiprobability distribution over all spin variables 

as the Fourier transform of the characteristic function 

with 

E(f) = exp i C f(q) 5; 
4 

E(q) = exp i C q(q) $ 
4 

E ( P )  = exp i C P ( q )  ST,. 
4 

For each value of the wavevector q t(q) and t*(q) (and likewise f(q) 
and e*(q)) are a pair of complex conjugate variables, whereas we choose 
q(q) = q*(Lq) (likewise q(q) = q*(-9)). The multidimensional integration 
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3 goes over the real and imaginary parts of the variables f, P ,  fj from 
-02 to +a 

5 = l (v d2f(q)/x (d4(0)12~) n d 2 i ( q ) ~ x l  . 1 I (7b.3) 
4*0 

The wavevector sum and products cover the region 

0 5 ( q l 5  l la  , a = lattice constant. (7 b.4) 

The quasiprobability distribution function thus defined is real because of 
( i d )+  = ST4 and (S;)+ = S', and has the moments 

A  - A  - + ( S i  Si2 . . .i; Sii Si5 . . . s;;, SZi S& , . . s 4;,, ( L ) )  
(7b.5) 

=35(q1)...t(qn)~(q;)...q(qb,)t*(-q1;)...5*(-qi,,) W(t , t* ,q , t )  

with 

Let us note that W(t,  t*, q, t) is the many-spin analog of the single-spin 
distribution function (5d.l) we have used in our discussion of super- 
radiance. 

a) Equation of Motion for W(5, t*, q, t) 

In order to construct the equation of motion for the quasiprobability 
distribution we need the following identities which generalize (5d.6) 
and (5d.7) 

with 

(a),,. = - N-'I2 iQ(ql - q) . 
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inserting these identities into 

F([, p, 8, t) = - (i/h) trk([) f (8 )  g(P) [H, w ( t ) ]  (7 b.7) 

we first get a differential equation for the characteristic function F and 
then, by Fourier transforming according to (7b.l), the desired equation 
of motion for the quasiprobability distribution function, 

~ ( 5 ,  5*, r ] ,  t )  = - i L  W(5,5*, r ] ,  t ) ,  (7b.8) 

with the "Liouvillian" 

1 at*(q;at*(qu) 
5*(q1) 5*(q + q" - q') - C.C. , 1 

y) Low-lql and High-Jql Variables 

Let us now separate the set of spin variables 15, t*, r ] )  in long-wavelength 
and short-wavelength variables as follows 

S, s*, sZ for 191 < Q , {s, s*, sZ) - 6 (7 b.lO) 
C'5*"={S,S*,Sz for IqlZQ, (S ,S* ,Sz) -8  

where Q is a wavevector cut-off to be fixed later. We now have to write 
the quasiprobability P and the Liouvillian as 

W(5,5*, r ] ,  t) = W(S, s*, sZ, S, S*, SZ, t) (7b.11) 
L(5, 5*, r ] )  = L,(s, s*, sZ) + L,(S, S*, SZ) + LO&, S, sZ, SS*, SZ) . 
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The three parts of the Liouvillian read 

same structure as L(5,5*, r ] ) ;  5+s, <*+s*, r]+sz; 
q-summations restricted as 0 5 lq < Q for all s, s*, sz I 
same structure as L(5,5*, r ] ) ;  5 +S, 5*+S*, r]+Sz; 

&= { q-summations restricted as Q 2 141 5 l/a for all S, S*, Sz I 
m rnin (2, v) 

L e , = C  C L(V.B) 

v = l  p = o  

same structure as L(5, 5*, r ] ) ;  in each term there are 
v low-)ql variables p of which occur as factors and 
(v  - p) in derivatives whereas all other spin variables 
are high-lql ones; q-summations restricted as 0 2 Iql< Q 
for each low-lql variable and as Q 5 1915 l/a for each 
high-lql variable. 

Somewhat loosely speaking we may call L,, L,, and L,, the Liouvillians 
referring to the free motion of the long-wavelength variables (L,), the 
short-wavelength variables (L,), and their interaction, respectively. It 
turns out to be convenient for the following to further classify the terms 
in L,, L,, and L,, according to the numberj of derivatives they contain 

6) Orders of Magnitude and Time Scales 

We assume that the spin system is in or nearly in thermal equilibrium at 
T 2 T,. Then we have as natural scales for the magnitude of spinfluctua- 
tions the thermal equilibrium expectation values 

Here ~ ( q )  is the wavevector-dependent static susceptibility which we 
assume known. We may now estimate the relative weights of the various 
terms in the Liouvillian by replacing the variables occurring as factors by 



1/TX(Q) and derivatives by l/1/-). We thus obtain 

a l l Q S  lql Sqm., all lql < Q  
o(q .0 ' )  = C C A(...) 

4 4 ' 4 ~ + 1 4 v + 2 . . . 4 ~ -  1 4142 . . .4v 

all  Q S  141 Sqmax 

1 C A(...) 
4 4 ~ 4 v + 1 .  . . 4 ~ -  1 4'4142...4v- I 
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These expressions can be evaluated once the exchange integral J(q, q') 
and the static susceptibility are known. Since a rough estimate will serve 
our purpose we use simple choices for these quantities. Molecular field 
theory gives for ~ ( q )  at T = T,, up to numerical factors of order unity, 

where h J is the exchange energy for nearest neighbors in the lattice. The 
spherical continuum model for the lattice [91] gives for J(q, q') 

J(q, q') = J a Z 

By replacing q-sums in (7b.15) with integrals as 

and by suppressing numerical factors of order unity we obtain 
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We now choose the wavevector cut-off to obey 

Q a 6  1 .  (7 b.20) 

The second parameter entering the order-of-magnitude relations (7b.19), 
1/m is the ratio of the exchange energy between nearest neighbors 
in the lattice to the thermal energy at the Curie temperature. Molecular 
field theory [92] yields this parameter as 

where Z is the number of nearest neighbors of a given spin in the lattice 
F: 
1 and S the total spin quantum number for the individual spins in the 

lattice. Resibois et al. [79,80] assume this ratio to be small compared to 
unity. We won't have to require this. 

We may now draw the following conclusions. Because of (7b.20) we 
can drop derivatives of higher than first order in the low-(qI Liouvillian L,, 

This is not so for L, nor L,, unless 1 / m 6 1  which we don't assume. 
The interaction Liouvillian does simplify, however, according to 

I Moreover, we see that 

Since the Liouvillian has the dimension of an inverse time we may 
consider (7b.24) as an order-of-magnitude relation for the time scales 
characteristic for the processes described by L,, L,, and L,,. The result 

I (7b.24) thus justifies our separation of the set of spin variables in low-lql 
and high-)ql subsets. 

E )  Master Equation for the Reduced Quasiprobability over the Long- 
Wavelength Variables 

Since the long-wavelength variables move on time scales much larger 
than the short-wavelength ones we can adiabatically eliminate the short- 
wavelength variables from (7b.8). The reduced quasiprobability over the 
low-variables, 

g(s, s*, sZ, t) = 3, W(s, s*, sz, S,  S*, SZ, t) 

with 
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obeys the formally exact Nakajima-Zwanzig equation (2b.13). The 
projector 'p used to eliminate the high-lql variables has to be taken as 

We choose the reference state for the high-lq) variables as the thermal 
equilibrium state 

Bref(S, S*, Sz) = 3, w(s, s*, sz, S, S*, Sz) 

with 

3, = j j n d2s(q) dsZ(o) n d2sz(q)j (7 b.27) 
OSl41<Q 1 O < l q l < Q  

and 

This is a reasonable reference state since the slowly moving long-wave- 
length variables see the rapidly moving short-wavelength variables as in 
thermal equilibrium. For the same reason a representative initial state 
for the whole system to start out with at some arbitrary time will be the 
local equilibrium state 

W(S, s*, sZ, S, S*, SZ, t = 0) = ~ ( s ,  s*, sz, t = 0) Bref(S, S*, S") . (7 b.28) 

This assigns an arbitrary initial distribution ~ ( s ,  s*, sz, 0) to the low-(ql 
variables but takes the high-lql variables as in thermal equilibrium. The 
Nakajima-Zwanzig equation for ~ ( s ,  siC, sz, t) then describes the relaxation 
of the low-)ql variables to thermal equilibrium. Before writing down this 
equation explicitly let us state that the inhomogeneity I(t) occurring there 
vanishes identically in the present case since we have 

(1 - 'p) W(s, s*, sz, S, S*, S', 0) = 0 

because of (7b.26) and 17b.28). Furthermore, we have the identities 

The first of these holds since 3,L,X=0 by partial integration for 
reasonable X (such that surface integrals vanish). The second identity 
holds since the integration over the Su commutes with differentiations 
with respect to the s". Finally, '5j3 L,,'p = 0 since all terms in L,, contain-. 
ing derivatives with respect to the S" vanish by partial integration and all 
others by conservation of total spin and momentum. For instance, 
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since there is no high-)ql variable with q = 0. On the other hand, 

because of J(q, q) = 0. We thus find the Nakajima-Zwanzig equation 
(2b.13) to read here 

f 

Q(s, s*, sZ, t) = - iL,e(s, s*, sz. t) - j dtr3,L,, 

This is still exact. To within corrections of relative weight (Qa)2 we may 
insert (7b.22) and (7b.23) and, by appealing to (7b.24), replace the 
exponential in the integral kernel with exp(- i L ,  t), and neglect retarda- 
tion effects. We thus obtain 

@(s, s*, s', t) = A Q(S, s*, sZ, t) (7b.3 1) 

with the differential operator 
m 

A = - iL,, - j dt3,(~(2.2) + ~ ( l . l ) + ~ ( l . O ) )  e - ' L ~ f  

0 

. ( ~ ( 2 ~ 2 )  + ~ ( 1 . 1 )  + L(I,O) 'ref (7b.32) 
m 

= - iL,, - j d t 3  23 L ( ~ . o ) ~ - ~ L s ~ ( L ( I , I ) + L ( ~ . o ) )  B,,,. 
0 

Here we have accounted for the fact that all terms in fi2q2) and L"," 
contain derivatives d/dSa(q) so that 3,(Z2v2) + L!',')) = 0. Moreover, 
by inserting the explicit expressions (7b.12) for the L"." we see that L'2,2) 
does not contribute8 at all to A which then turns out to be the following 
Fokker-Planck differential operator 

Because of momentum conservation. 
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We here have, in the first bracket, the reversible nonlinear drift terms 
stemming from L,, which describe a mode-mode coupling. The remain- 
ing drift and diffusion terms are due to the dissipative influence of the 
thermal equilibrium high-lql spin fluctuations on the low-lql variables. 
They involve the complex damping constants and the diffusion constants. 

= Re N -  ' C J(ql, q' - q) J(q" + q, q") j dt3, 
4'4" 0 

Similar expressions are obtained for y, + i A,, D,. For T > T,, i.e. for the 
paramagnetic state we have, by symmetry, 

The y are damping constants, the A frequencies of periodic long-wave- 
length spin excitations. These latter qus t  not be confused with the usual 
spin waves which occur below T,  as Goldstone modes tied up with a 
symmetry-breaking spontaneous magnetization. The A don't vanish 
above T,. In order to find the relative weights of the various terms in the 
Fokker Planck "Liouvillian" A we again apply the scheme explained 
in part 6 of this section 

d t ~ ( ' , O ) e - i L ~ ' ~ ( l l )  
0 (linear drift) - - = 1 / N ( o ~ \ ~  

0 (nonlinear drift) -, - ,  I=-, 

0 (L, 1) 

Since (Qa) is small but finite we see that the weight of the linear drift 
and diffusion terms in A is asymptotically small in the thermodynamic. 
limit. At the Curie point, where our estimates are valid, the behavior 
of the long-wavelength fluctuations is determined exclusively by the 
nonlinear mode-mode coupling terms. However, the mode-mode- 
coupling terms will loose their predominance for T away from the Curie 
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temperature. This can be verified by using the temperature-dependent 
susceptibility ~ ( q )  in the order-of-magnitude estimates carried out above. 
We therefore expect the Fokker Planck equation (7 b.31) to be valid in an 
interpolative sense for I(T - Tc)/Tcl 4 1. 

Because of 

the Fokker Planck equation P = A Q  implies as it must the conservation 
of the total spin which is represented by the q = 0-variables s"(0). This is 
obvious from the fact that A does not contain derivatives a/asa(0). The 
total-spin variables s"(0) thus enter A as parameters only. Therefore the 
Fokker Planck equation does not determine the dependence of e(s,s*,sZ) 
on the sa(0). It is thus consistent with (7b.31) and probably necessary 
(to within the accuracy we are working with, (Qa)') to take 

where eo(s(0), s*(O), sz(0)) is the equilibrium distribution of the total-spin 
variables and @(s, s*, sZ, t) the time-dependent distribution of the q =k 0- 
spin variables. The latter obeys a Fokker Planck equation ;= /i4 found 
by integrating (7b.31) over the sa(0) and using (7b.38). The differential 
operator differs from A as given by (7b.33) in that the q-sums exclude 
q = q' and that spin-wave terms 

appear where w(q) are the wellknown spin-wave frequencies 

It is easily checked that the Fokker Planck equation (7b.31) implies 
detailed balance [93,94]. This has to be so since we have obtained 
(7b.31) by eliminating irrelevant variables from the time-reversal- 

invariant Liouville-v~n Neumann equation ~ ( t )  = (-  i /h)  [H, ~ ( t ) ] .  
With the help of this important property of our Fokker Planck equation 
we easily find the stationary quasiprobability distribution to be a 
Gaussian with respect to the q +0-spin variables. The width of the 
Gaussian turns out to be given by the moments 
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This relation between the diffusion and damping coefficients and equi- 
librium expectation values can be read as a dissipation-fluctuation 
theorem for the random process described by (7b.31). 

The Fokker Planck equation (7 b.3 1) is stochastically equivalent [27] 
to Kawasaki's Langevin equations. Its time-dependent solution and the 
corresponding spin correlation functions can be constructed by using a 
perturbation scheme developed by Kawasaki [81] and made systematic 
by Martin et al. [95]. We will not enter this problem here since our aim 
was to put the Fokker-Planck equation (7b.31) and the equivalent 
Langevin equations on a microscopic basis without recourse to any 
a-priori assumptions. 

It is a pleasure to acknowledge helpful conversations with T. Arecchi, R. Bonifacio, 
V. Degiorgio, D. Forster, R. J. Glauber, R. Graham, H. Haken. B. Lix, P. C. Martin, N. E. 
Rehler, H. Risken, P. Schwendimann, M. 0 .  Scully, and W. Weidlich. 
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